
This document is a PDF formatted version of a printed document.
The official printed document may also contain charts and
photographs which are not reproduced in this electronic version.
If you require the OFFICIAL printed version of this document,
contact the U.S. Department of Housing and Urban Development,
Office of Inspector General, 451 7th Street SW, Room 8260,
Washington, DC 20410, or call 202-708-1613.

Issue Date: March 5, 1996

Report Number: 96-DP-166-0001

Report Title: Controls Over Software Maintenance Must Be
 Significantly Strengthened

MEMORANDUM FOR:Dwight P. Robinson, Deputy Secretary, SD
Marilynn A. Davis, Assistant Secretary for
 Administration, A
Andrew M. Cuomo, Assistant Secretary for Community
 Planning and Development, D
Nicolas P. Retsinas, Assistant Secretary for
 Housing-Federal Housing Commissioner, H
Kevin E. Marchman, Acting Assistant Secretary for
 Public and Indian Housing, P
Michael A. Stegman, Assistant Secretary for Policy
 Development and Research, R
Elizabeth K. Julian, Acting Deputy Assistant
Secretary for Policy and Initiatives, EP
John A. Knubel, Chief Financial Officer, F
William E. Dobrzykowski, Vice President,
Government National Mortgage Association, TF
Steven M. Yohai, Acting Director, Office of
 Information Technology, AMI
Craig E. Durkin, Director, Office of Procurement
 and Contracts, ARC

FROM: Benjamin K. Hsiao, Director, Information Systems Audit
 Division, GAA

SUBJECT: Review of HUD's Management of Software Maintenance

We have completed a review of HUD's Management of Software
Maintenance. Our objectives were to evaluate HUD's:

Software maintenance policies and procedures;

Management of software maintenance during the system
lifecycle;

Management of contractors' performance of software
maintenance; and

Management of costs of application software
maintenance.

 We analyzed aggregate performance data of six critical and
one highly sensitive applications to determine if there were
indicators of problems in software maintenance. The focus of the
audit recommendations was on effective preventive controls.

 Our report contains three findings. The findings disclose
that numerous controls are needed in software maintenance. To
control costs, HUD needs to adopt a project cost accounting
system which can uniformly and consistently accumulate, track,
allocate, bill, and report costs to system users; apply a
consistent definition of software maintenance for project cost
tracking and billing purposes; and require that system managers
periodically update cost benefit analyses to determine when
systems should be redesigned or replaced.

 To control the risk of errors and system failures, the
Office of Information Technology (IT) must control software
changes. System owners need to (1) establish a centralized
board to review, evaluate and approve all requests for change,
(2) develop a maintenance schedule, (3) define standard
classifications of change, and (4) perform sufficient user
testing and acceptance of software changes. Further, performance
indicators for project tracking or established measurable quality
goals should be established and IT must use purchased software
tools for configuration control.

 Finally, performance based contracting should be used to
control the quality of services and products provided by
contractors providing software development and maintenance
support. HUD must establish standards to monitor contractor
performance to prevent poor quality work that could damage
critical data, cause systems to fail, and increase costs beyond
what is already spent for correcting problems.

We believe the control weaknesses described in the report
merit the attention of agency senior management because they
could result in system failures that would prevent HUD from
fulfilling its mission. Within 60 days, please give us, for each
recommendation made in the report, a status report on: (1)
corrective action taken; (2) the proposed corrective action and
the date to be completed; or (3) why action is considered
unnecessary.

 Should you or your staff have any questions, please have
them call me at 708-3444 extension 149.

Executive Summary

Software maintenance is defined as those activities required to
keep an application system operational and responsive after it1

is accepted and placed into production. It is a costly,
technically challenging, and critically important activity. For
the last two years HUD spent over $240 million to operate,
develop, and maintain its application systems, which process
hundreds of billions of dollars worth of transactions in support
of program activities. HUD depends on these systems to perform
mission critical functions such as subsidy distribution and asset
management.

Our audit objectives were to evaluate management controls over
the application software maintenance process and the quality and
quantity of cost information. We analyzed aggregate performance
data of six critical and one highly sensitive applications to
determine if there are indicators of problems in software
maintenance. The focus of the audit recommendations was on
effective preventive controls.

Summary of Findings

Project Cost Accounting Must Be Used To Control Software Costs

Current industry sources indicate that software maintenance can
account for as much as 80 percent of an application system's
lifecycle costs. These costs must be identified so management
can make informed decisions regarding system enhancements or
replacements. However, HUD has significantly understated its true
software maintenance costs. HUD does not have a project cost
accounting system which can uniformly and consistently
accumulate, track, allocate, bill, and report costs to system
users as intended by OMB Circular A-109.

We reviewed the costs of seven application systems over an
18-month period. Out of a total of $40.8 million billed to users
under the Working Capital Fund, $4.7 million of the maintenance
costs were classified as development costs that the Federal2

Information Processing Standards Publication (FIPS PUB) 106,
Guideline on Software Maintenance, would have classified as
perfective and/or adaptive maintenance. We also noted that $3.18
million in system engineering hours were not consistently treated
as either development or maintenance between the project
management and cost allocation/billing processes. In addition,
maintenance work associated with $29.4 million in computer usage
and telecommunications costs were not separately identified.
Further, HUD managers were only managing approximately $11.2
million, or 27 percent of the total $40.8 million costs billed
for the seven systems reviewed.

There are several reasons why these conditions exist. HUD has not
applied a consistent definition of software maintenance for
project cost tracking and billing purposes. Also, HUD's current
cost allocation and billing process is complex, disjointed,
requires much manual intervention, and does not interface with
HUD's central accounting system. In addition, the project cost
chart of accounts lacks specific accounts of activities necessary
for cost measurement purposes. Another reason is that system
managers are not required to periodically update cost benefit
analyses for major ADP systems.

Without identifying, capturing, and reporting maintenance costs
in accordance with FIPS PUB 106, HUD cannot make informed system
and budget decisions. In particular, HUD cannot determine when
systems should be evaluated for replacement because of excessive
maintenance costs. HUD's systems cost more than $110 million a
year and at least $1.5 billion over their lifecycle to operate
and maintain.

Numerous Controls Needed For Application Software Changes

Controlling software changes is essential to keep HUD's
application systems functioning and responsive to user needs.
However, despite Federal guidance, we found change control
weaknesses in all seven HUD application systems we reviewed.
System owners have not (1) established centralized approval and
review of changes, (2) developed a maintenance schedule, (3)
defined standard classification of changes, and (4) performed
sufficient user testing and acceptance of software changes. The
Office of Information Technology (IT), in providing technical
support, has not formally defined a software maintenance process,
established performance indicators for project tracking, or
established measurable quality goals. In addition, IT did not use
software tools for configuration control for which it has already
purchased.

Deficiencies in software change controls have resulted in a
significant amount of errors during maintenance. IT's own study
showed error correction rates that could be higher than the
normal rate defined in Federal Information Processing Standards
Publication (FIPS Pub) 106, Guideline on Software Maintenance.
We also noted that although 84 percent of the software releases
did not result in production problems, 16 percent of all releases
created new problems that were very costly in IT and program
office staff time. The study also showed that during an
eight-month period, 26 releases (a set of software changes)
required 44 emergency releases of corrections to software changes
that did not work properly after having been tested and approved
for release into production. This data and similar results from
our analysis strongly suggest that established review and testing

procedures are not adequate, and perhaps contractor performance
could be improved. These errors also could indicate that these
systems have become unstable or unreliable, and need to be
replaced. In addition, these errors could have damaged critical
data and caused system failures.

Adequate change controls are not in place because the application
systems owners have not been exercising their responsibilities
required under Office of Management and Budget (OMB) Circular A-
130 to manage their application systems for the successful
conduct of the program mission. Another cause is the lack of a
software maintenance policy that defines the responsibilities,
authorities, functions, and operations of IT and user
organizations. A third important reason is the lack of
performance measures to aid management in determining the quality
of software after the changes are made.

HUD Has Not Been Using Performance-Based Contracting Methods for
Software Development and Maintenance Contracts

The Offices of Procurement and Contracts (OPC) and IT have not
been using performance-based contracting methods to award
software development and maintenance contracts as required by
Federal Procurement Regulations. HUD has consistently awarded
Cost-Plus-Fixed-Fee (CPFF) contracts rather than using incentive
contracts for software development and maintenance. On the eight
CPFF contracts providing software support to the seven
application systems we reviewed, our evaluation revealed that the
Statements of Work (SOWs) lacked measurable performance
standards, acceptable quality levels, and quality assurance
surveillance plans. Consequently, these eight contracts, worth
over $110 million, provide neither the incentive for nor the
accountability of contractors to perform well and control costs.
Also, without performance standards, HUD cannot monitor
contractor performance to prevent poor quality work that could
damage critical data, cause systems to fail, and increase costs
beyond what is already spent for correcting problems.

Conclusions

We have concluded that HUD does not have effective controls over
software maintenance. As examples, HUD cannot make informed
decisions on system replacement or redesign because government
and industry accepted classifications are not used to capture
software maintenance costs. HUD cannot control the quality of
software changes because needed data such as number of changes,
frequency of changes, modules changed most frequently, failure
rate, defects, etc. are not collected and analyzed. HUD cannot
hold contractors accountable for the quality and costs of
products and services provided because contractor performance

standards have not been established. Finally, HUD lacks a
performance measurement program to aid management in determining
whether the resources expended for software maintenance are
achieving the goal of keeping the application systems functioning
and responsive to user needs.

The control deficiencies in software maintenance expose HUD to
several high risks. Millions of dollars could be spent each year
on application systems that are becoming obsolete and should be
replaced. Software changes could be processed without adequate
audit trails, and unapproved, unintentional, or malicious
modifications could be introduced and proceed undetected through
the change process. Errors, system failures, and excessive costs
could result from poor performing contractors. The Department
should report the control deficiencies in software maintenance as
a significant weakness in accordance with HUD Handbook 1840.1,
Departmental Management Control Program Handbook.

Recommendations

While we make several specific recommendations, there are two
themes running through them--measurement and system owner
responsibility. We have established that software maintenance is
a costly, technically challenging, and critically important
activity. The recommendations on measurements are consistent
with General Accounting Office's Best Practice 5, "Measure the3

performance of key mission delivery processes." The
recommendations on system owner responsibility begin to implement
Best Practice 9, "Establish customer/supplier relationships
between line and information management professionals."

Chief Financial Officer
Expedite the implementation of the Project Cost
Accounting System (PCAS)/Cost Allocation Application;
and

Establish cost accounting standards to ensure
maintenance and development project costs are uniformly
and consistently accumulated, tracked, allocated, and
reported for management and billing purposes.

Acting Director of Information Technology, through the
Technology Investment Board (TIB)

Establish a software maintenance definition that can be
uniformly and consistently applied throughout HUD's
project accounting and cost allocation and billing
processes that meet the intent of FIPS PUB 106;

Establish appropriate software maintenance

classifications that, at a minimum, include the three
categories described in FIPS PUB 106;

Establish a more measurable software chart of accounts
that describes specific development and maintenance
activities needed to gain economic insights into the
major costs associated with software;

Establish guidelines and define management
responsibilities for capturing all system lifecycle
costs to include updating the required cost benefit
analyses at appropriate, defined, and periodic
intervals;

Issue guidelines with the concurrence of the Management
Committee for system owner organizations to use in
managing the software maintenance of their applications
in accordance with OMB Circular A-130:

Establishing Change Control Boards;

Evaluating the systems usability in supporting
organizational goals and mission;

Define software maintenance and classify changes
according to the functional type of change being made
to the application systems (e.g., adaptive, corrective,
perfective);

Identify the measurements needed to support
Departmentwide management of information technology;
and

Adopt a standardized form for initiating all requests
for software changes, regardless of anticipated level
of effort.

TIB Representatives and System Owner Organizations
Follow the guidelines issued by the Management
Committee to establish a centralized change control
board (See Recommendation 3 (a) above);

Follow the guidelines issued by the Management
Committee to periodically evaluate the application
systems' capability to support Departmental and office
strategic objectives; and

Follow the guidelines issued by the TIB for conducting
user acceptance testing and reviewing the test results
of software changes.

Acting Director of Office of Information Technology
Establish a descriptive maintenance account within the
integrated resource accounting system Biller 1100 to
capture software maintenance computer usage costs;

Modify and/or establish policy documents to include an
organizationwide software maintenance policy describing
in broad terms the responsibilities, authorities,
functions, and operations of both system owners and IT;

Establish a policy for the use integrated software
configuration management (SCM) tool, such as ENDEVOR,
for all application systems on all platforms (i.e.,
UNISYS, HDS, LAN, PC);

Establish policies for software verification and
validation (V&V) plans, as defined in FIPS PUB 132;

Modify the System Development Methodology (SDM) to
include the following:

Detailed source coding standards applicable to all
phases in the SDM;

Formal testing procedures for software
modifications and acceptance testing by the user
community; and

An objective review of modified source code and
test documentation to ensure the modified code
conforms with established source code standards
and effectively complies with the change request,
and that no additional unapproved changes were
introduced by the programmers during the coding
process;

Prepare guidelines to assist IT to develop realistic
performance standards that are measurable, including:

Resource tracking - quantification in dollar
amounts of resources used as the input for
production of a service or product;

Work product tracking - the number of units of the
product or service provided to the customer, and
appropriate measures of size and complexity;

Quality tracking - the level of service or product
quality, both in terms of customer satisfaction
(external quality) and of work performed to

provide the service (internal process quality);
and

Change tracking - a common tracking system that
will track all software changes made to each
application system, regardless of the type of
proposed change or its anticipated level of
effort.

Incorporate surveillance plans and performance
requirements' summaries into performance-based
contracts;

Develop task specifications that follow internal
instructions, IT-CON-04 and IT-CON-05, and include
measurable performance standards and acceptance
criteria related to each specific task assignment;

Ensure that modifications to the task specifications
provide additional details about the task and/or work
requirements;

Ensure that all product acceptance forms are reviewed
timely according to agency standards; and

Ensure that copies of task specifications and product
acceptance forms issued are provided to OPC for their
review and evaluation.

Director of the Office of Procurement and Contacts (OPC)
Implement performance-based contracting methods for
software development and maintenance contracts.

Auditee Comments and OIG Response

We provided the draft report to all the HUD program offices on
July 12, 1995. We received extensive verbal and written comments
from IT. We also received written comments from OPC, and Public
and Indian Housing (PIH). These written comments are provided in
Appendix A.

We held an extensive discussion on the draft report with IT on
August 30, 1995. IT expressed concern that the language used and
problems described in the draft report were exaggerated and
inflammatory. Subsequent to the meeting, we considered IT
concerns and made the changes that we deemed appropriate. IT
comments, dated November 13, 1995, generally agreed with the
recommendations in the revised version of the report but remained
concerned that its comments and suggested language changes were

not fully addressed. We reviewed the comments and made further
changes as needed. Reasons for not making certain suggested
changes are discussed in Appendix A.

PIH suggested language changes to some of the recommendations.
We have made the changes as deemed appropriate. OPC generally
agreed with the intent of the recommendations.

Table of Contents

Executive Summary i

Chapter 1

Introduction . 1

Audit Objectives . 2
Audit Scope & Methodology . 2
Audit Period . 6
Significant Control Weakness . 6

Chapter 2
Project Cost Accounting Must Be Used
To Control Software Costs . 7

Federal Requirements and Guidance . 8
Resource Tracking and Billing Mechanisms 10
Resource Tracking and Billing Mechanisms Are
 Overly Complex and Manually Intensive 11
Maintenance Costs Are Not Properly
 Categorized and Consistently Applied . 18
Lifecycle Costs Are Not Being Managed . 27
Recommendations . 33
Auditee Comments and OIG Response . 34

Chapter 3
Numerous Controls Needed For Application
Software Changes . 37

Federal Requirements and Guidance and
 Other Criteria . 39
System Owners Must Manage Their Software
 Changes . 40

IT Must Manage Software Maintenance
 Process . 51
Project Tracking Not Based on Measurement 61
Testing to Control Quality Must Be
 Strengthened . 64
Departmentwide Software Configuration
 Management Process Needed . 69
Key Success Factors in Controlling Software
 Changes . 74
Recommendations . 78
Auditee Comments and OIG Response . 84

Chapter 4
HUD Has Not Been Using Performance-Based
Contracting Methods for Software
Development and Maintenance Contracts 87

Federal Requirements on Performance-Based
 Contracting . 88
Elements of a Quality Assurance Surveillance
 Plan and the Performance Requirements Summary 88
HUD's Software Development and Maintenance
 Contracts Are Not Performance-Based 91
Incentive Type Contracts for Software
 Services Are Not Used . 97
HUD's Current Efforts to Implement
 Performance-Based Contracting Fall
 Short of OFPP Policy and Guidelines . 99
Recommendations . 104
Auditee Comments and OIG Response 105

Appendices

A Departmental Comments . 107
B Federal and Departmental

 Criteria and Industry Practice . 127
C Software Measurement . 137
D Task Specification Example . 141

E A Generic Maintenance Process . 147
F Report Distribution . 157

Abbreviations

ADP Automated Data Processing
AQL Acceptable Quality Level
ARN Advance Requirements Notice
BPN Budget Project Number
CA-JARS CA-Job Accounting Resource Management System
CARMS Computer Accounting Resource Management System
CASE Computer Aided Software Engineering
CBSUP Core Block Standard Unit of Processing
CHUMS Computerized Homes Underwriting Management System

(F17)
CLAIMS Single Family Insurance System (A43C)
CMD Computer Management Division
COBOL Common Business Oriented Language
COM Computer Output Microfiche
CPFF Cost-Plus-Fixed-Fee
CPU Computer Processing Unit
CSG Computer Services Group
DB2 IBM Database Management System
DR Difficulty Report
DSE Dedicated Services and Equipment
FAR Federal Acquisition Regulations
FAST Funds Accounting and System Tracking
FIPS PUB Federal Information Processing Standards Publication
FY Fiscal Year
GAO General Accounting Office
GSA General Services Agency
HDS Hitachi Data System
HIIPS HUD Integrated Information Processing System
HQ Headquarters
HUD Housing and Urban Development
IAS IT Inventory of Automated Systems

IEF Information Engineering Facility
IPF Interactive Processing Facility
IT Office of Information Technology
IRM Information Resource Management
IRMPB Information Resource Management Planning Board
IRMWG Information Resource Management Working Group
JCN Job Control Number
LAN Local Area Network
LOCCS Line of Credit Control System (A67)
MAPPER Application Development Tool for Unisys Mainframe
MFIS Multifamily Insurance System (F47)
OFA Office of Finance and Accounting
OFPP Office of Federal Policy and Procurement
OIG Office of Inspector General
OMB Office of Management and Budget
OPC Office of Procurement and Contracts
PAO Program Area Office
PARMS Project and Resource Management System
PAS Program Accounting System (A96)
PC Personal Computer
PCIE President's Council on Intergrity and Efficiency
PCN Project Control Number
PMS Program Migration System
PRS Performance Requirement Summary
PTARS Problem Tracking and Reporting System
QAE Quality Assurance Evaluator
QASP Quality Assurance Surveillance Plan
QMS Quality Management Staff
RMS Resource Management Staff
SCM Software Configuration Management
SDM System Development Methodology
SEG System Engineering Group
SEI Software Engineering Institute
SHAS Section 235 Subsidized Housing System (A65)
SMS Software Migration System
SOW Statement of Work
SVVP Software Verification and Validation Plans
TAR Teleprocessing Assistance Request
TIB Technology Investment Board

TIIS Title 1 Insurance and Claims
UAR User Assistance Request
Unisys Mainframe manufacturer
V&V Verification and Validation
WCF Working Capital Fund

Chapter 1

Introduction

According to Federal Information Processing Standards Publication (FIPS
PUB) 106, software maintenance accounts for as much as 70 percent of
the application software resources expended within the Federal
Government. Current industry sources indicate that software maintenance
can account for as much as 80 percent of an application system's lifecycle
costs. Additionally, the rapidly growing inventory of software systems
within the Federal Government is increasing the demand for software
maintenance. It is therefore imperative that management has in place a
strong, disciplined, and clearly defined approach to software maintenance,
one that will assist management in controlling and improving the software
maintenance process and provide accountability.

HUD has developed over 200 application systems to help manage varied
and complex programs, which include: $378 billion of insurance in force
and $12.9 billion in property and other assets related to the Federal
Housing Administration (FHA) fund; $423 billion of Government National
Mortgage Association (GNMA) Mortgage-backed securities; $25 billion in
annual budget authority; and tens of billions of dollars of long-term housing
subsidy commitments. HUD management classified loss of availability of
17 of these systems as a major risk for performance of the program
mission, and another 25 as a serious risk.

Based on Fiscal Years 1993 and 1994 billings under the Working Capital
Fund, HUD spent over $240 million in support of program activity
controlling hundreds of billions of dollars in assets, insurance, and
subsidies.

Audit Objectives

The audit objectives were to evaluate management controls over the
application software maintenance process and the quality and quantity of
cost information. Specifically, we evaluated HUD's:

Software maintenance policies and procedures;

Management of software maintenance during the system
lifecycle;

Management of contractors' performance of software
maintenance; and

Management of costs of application software maintenance.

Audit Scope and Methodology

Audit Scope
We judgementally selected seven operational mainframe application
information systems for review. These seven systems were selected
because: (i) they are considered critical or high risk sensitive information
systems, as defined by the Office of Information Technology (IT), (ii) they
are stable systems that have been in operational status ranging from 3 to
19 years, and (iii) the systems are representative of both the UNISYS and
the IBM/Hitachi Mainframe platforms. Each system is briefing described
below.

The A43C Single Family Insurance System-Claims Subsystem (Claims) is
considered by HUD to be a major risk system with a criticality level of
"needed immediately." This system supports the Department's Single
Family Insurance Claim (SFIC) payment processes and provides online
update and inquiry capability to SFIC data bases and to cumulative history
files. Claim payments are made by check or Electronic Funds Transfer
(EFT) daily via an Hitachi Data System/UNISYS/Treasury interface. For
Fiscal Year 1994, this system processed 73,228 claims with a total dollar
amount of $4.9 billion.

The A65 Subsidized Housing Accounting System (SHAS) is considered by
HUD to be a serious risk system with a criticality level of "needed in the
short term." The system is designed to provide accounting and financial
management support for the Section 235 Mortgage Interest Assistance.
For Fiscal Year 1994, this system processed an estimated 820 FHA cases
with a total amount disbursed of $2.6 million.

The A67 Line of Credit Control System (LOCCS) is considered by HUD to
be a major risk system with a criticality level of "needed immediately." The
system is the Office of Finance and Accounting, General and Accounting
Group's primary vehicle for cash management. It makes direct payments,
either by check or wire transfer of funds, to recipients in response to
submitted vouchers, yearly payment schedules, or telephone requests.
For Fiscal Year 1994, 708,190 disbursements were made with a total
dollar amount of over $26 billion.

The A96 Program Accounting System (PAS) is considered by HUD to be a
serious risk system with a criticality level of "needed immediately." This
system is an integrated budgetary accounting system for HUD's grant
programs, including Community Development Block Grants, and is
responsive to the financial needs of program accounting, budgeting, and
auditing officials. For Fiscal Year 1994, this system processed at least
$17 billion worth of obligations.

The F17 Computerized Homes Underwriting Management System
(CHUMS) is considered by HUD to be a serious risk system with a
criticality level of "needed immediately." This system assists and supports
Field staff in the processing of single family mortgage insurance
applications from initial receipt through endorsement. Additionally, the
system provides assistance in appraisal and mortgage credit evaluation.
For Fiscal Year 1994, a total of 1,338,296 endorsement cases were
processed for a total mortgage insurance amount of $100.3 billion.

The F47 Multifamily Insurance System (MFIS) is considered by HUD to be
a major risk system with a criticality level of "needed immediately." This
system provides automated online, interactive support for HUD's
multifamily mortgage insurance programs. It maintains the inventory of
multifamily insurance-in-force cases, and all pertinent and historical data.
During Fiscal Year 1994, this system processed 612 new insurance
endorsement projects representing 101,896 units for a total amount of
$3.2 billion.

The F72 Title I Insurance and Claims System (TIIS) is considered by HUD
to be a serious risk system with a criticality level of "needed immediately."
This system provides operational and management support for the
execution of the Title I Property Improvement and Mobile Home Loan

Program. This includes loan inventory maintenance, billing, premium
collection and reconcilement, claim processing, and Title I reserves
maintenance and accounting. For Fiscal Year 1994, 72,148 in Title I loans
were processed with a total dollar amount of $806 million and 7,602 Title I
claims paid with a dollar amount of $65 million.

In addition to the seven systems identified above, we also reviewed 8
Automated Data Processing (ADP) software and maintenance contracts
out of a total of 71 agencywide ADP contracts. These contracts provide
software development and maintenance services for the Department, and
were selected for their support of the seven systems we reviewed. The
estimated contract value for these eight contacts is more than $135
million, of which approximately $8.6 million were billed for the seven
applications during our review period.

Methodology
The audit steps included:

Reviewing applicable Federal laws and regulations, industry
practices, and HUD's policies and procedures, and practices
related to our objectives;

Interviewing HUD system managers and sponsors, program
users, and IT, OPC, and contractor staff;

Reviewing documentation related to project management and
resource systems used for managing and controlling
development and software maintenance efforts;

Reviewing and analyzing data from the project management
and resource tracking systems and comparing this data to the
categories identified in FIPS PUB 106;

Reviewing and analyzing reports from HUD's problem tracking
and reporting system;

Reviewing and analyzing HUD's software configuration
management and change control process; and

Reviewing and analyzing software development and
maintenance contracts and related procurement
documentation.

Audit Period

We performed the field work from March 1994 to November 1995. The
field work reviewed cost, contract and performance data from the period
October 1992 through March 1994. We conducted the audit in
accordance with generally accepted government auditing standards.
Significant Control Weakness

The control deficiencies in software maintenance expose HUD to several
high risks. Weak change controls could allow unapproved, unintentional,
or malicious modifications to be introduced and proceed undetected
through the change process, and software changes could be placed into
production without adequate testing. Failure of any of the critical and high
risk application systems we evaluated could prevent HUD from fulfilling its
mission. As such, we consider these control weaknesses to be significant
and merit prompt attention of agency senior management.

Chapter 2

Project Cost Accounting Must Be Used To Control
Software Costs

HUD needs to implement a project cost accounting system that will enable
HUD to collect and use cost information as intended by Office of
Management and Budget Circular (OMB) Circular A-109. Our review of
costs for the seven application systems disclosed the following:

Approximately $4.7 million of the system engineering costs
were categorized as development costs that would be
categorized as either perfective or adaptive maintenance in
accordance with FIPS PUB 106 guidelines;

Approximately 66,800 system engineering hours, representing
about $3.18 million, were not classified consistently between
the project management and cost allocation and billing
processes; and

Software maintenance work associated with approximately
$29.4 million of computer usage and telecommunications
costs, were not separately identified.

We found that IT branch managers and program system sponsors were
only managing approximately $11.2 million, or 27 percent, of the total
$40.8 million costs billed for the seven systems reviewed. Also, HUD
management had not periodically updated cost benefit analyses for major
data systems as required.

These conditions exist because HUD lacks a project cost accounting
system that can uniformly and consistently accumulate, track and report
software costs for both management and billing purposes. Other reasons
include an absence of a formal and consistently applied maintenance
definition based on functional categories of maintenance activities as
described in FIPS PUB 106. Segregating maintenance costs into these
categories is essential for management to evaluate the costs and benefits

of system redesign versus continued maintenance of software which has
become error prone, ineffective and costly. In addition, we found that
HUD's policies and procedures do not require periodic cost benefit
analyses as required by OMB Circular A-11 and A-130.

Consequently, HUD cannot make informed decisions regarding systems
that cost more than $110 million a year to operate, develop, and maintain.
Further, by not managing total lifecycle costs, HUD management can
neither fully evaluate alternatives to satisfy system requirements nor
determine when systems should be replaced because of excessive
maintenance costs.

Federal Requirements and Guidance

OMB Circular A-109 requires that each agency acquiring major systems
should maintain a capability to (i) predict, review, assess, negotiate, and
monitor lifecycle cost; (ii) assess acquisition cost, schedule and
performance experience against predictions, and provide such
assessments for consideration by the agency head at key decision points;
(iii) make new assessments where significant costs, schedule or
performance variances occur; (iv) estimate lifecycle costs during system
design concept evaluation and selection, full-scale development, facility
conversion, and production, to ensure appropriate trade-offs among
investment costs, ownership costs, schedules, and performance; and (v)
use independent cost estimates, where feasible, for comparison purposes.

FIPS PUB 106, issued in 1984, is the most current Federal document that
specifically addresses software maintenance. Although this document is
over ten years old, the software maintenance concepts, functions,
classifications, and processes identified in this publication still remain valid
today. This document provides guidelines on controlling and improving
software maintenance throughout a system's lifecycle. It also provides
management with a definition of maintenance that functionally classifies
software maintenance activities into three categories: perfective, adaptive,
and corrective. Further, this publication concludes that improvements in
the area of software maintenance will come primarily because of the
software maintenance policies, standards, procedures and techniques
instituted and enforced by management.

OMB Circular A-130 requires Federal agencies to account for the full costs
of operating information technology facilities and recover these costs from
the users. This Circular also requires Federal agencies to implement a
system to distribute the full cost of providing services to the user. The
term "full cost" is comprised of all direct, indirect, general and
administrative costs incurred in the operation of the facility. These costs
include personnel, equipment, software, supplies, contracted services,
space occupancy, intra-agency and inter-agency services, and other
services.

The following is a listing of the Federal and HUD requirements and
guidance used besides the above to review the software maintenance
cost portion of our audit.

OMB Circular A-11, Preparation and Submission of Budget
Estimates;

1994 GAO Executive Guide, entitled "Improving Mission
Performance Through Strategic Information Management and
Technology: Learning from Leading Organizations";

HUD Handbook 2400.1, Information Resources Management
(IRM) Policies; and

Applied Software Measurement, Assuring Productivity and Quality by
Capers Jones.

For more information about the criteria see Appendix B.

Resource Tracking and Billing Mechanisms

HUD uses the Working Capital Fund (WCF) to provide IRM services to all
customers in the Department. Costs incurred by IT for staff and
contractors are billed and paid by the customers through the WCF.

The Project and Resource Management System (PARMS) is the official
project management system of the Software Engineering Group (SEG).
Its purpose is to provide a formal means to record, monitor, and manage

all ADP systems work done by SEG staff or contractors. The entry of
complete, accurate data about resources, projects, phases, activities,
status comments, and time charges exists for two primary purposes: (1) to
help managers oversee the process of building and maintaining
automated systems, and (2) to generate time charge information that can
be used to "charge back" system costs to users for budget purposes.
The "charge back" system fulfills the OMB Circular A-130 requirement that
the information processing facility recovers costs from the users of the
facility. PARMS also has a budget function that management uses for
budget formulation and tracking purposes, and to assist in the IRM
planning and budgeting process. This budget module creates budget
projects identified under individual budget project numbers (BPNs). BPNs
contain general funding information, which mirror, at an aggregated higher
level, the individual projects identified under project control numbers
(PCNs). PCNs are used to record time charges. The BPNs and the PCNs
are linked to the applicable WCF project number and reimbursable order
number (RON) that are part of the Cost Allocation and Billing Process.

The Funds Accounting and Tracking System (FAST) is an internal system
used by management for document preparation and tracking, and budget
and contract accounting. Document preparation and tracking includes
online entry of funding documents, online concurrence and approval of
funding documents, and printing of electronically approved documents.
Accounting functions include maintaining budget and contract balances as
funding documents are approved, maintaining task specification balances
as invoices are processed, producing financial reports for the Government
Technical Representative, and tracking dollar expenditure by user for
each subobject code.
Resource Tracking and Billing Mechanisms Are
Overly Complex and Manually Intensive

A Project Cost Accounting System Is Needed to Manage
Software Project Costs
HUD's process for tracking and billing costs is complex, disjointed, manual
intensive, and does not interface with HUD's central accounting system.
IT recovers WCF expenditures through reimbursements from customers'
appropriated funds that flow through the Cost Allocation and Customer
Billing Process (See Figure 1). The Resource Management Staff (RMS)

manages the cost allocation and customer billing process for the Working
Capital Fund. This process combines project and budget information from
PARMS with the contract and budget data from FAST, and resource
usage data from the Computer Accounting Resource Management
System (CARMS) and CA-Job Accounting Resource Management System
(CA-JARS) to produce a monthly chargeback report that is submitted to
the Office of Finance and Accounting (OFA). This report identifies
charges by fund, customer, and RON. OFA uses the chargeback reports
to transfer funds from program accounts to the Working Capital Fund to
cover the costs and to record and update the General Ledger in the
Agency Accounting System.

The process in Figure 1 also produces a monthly Statement of Services
for each user's office. This statement is used to bill users for IRM services
such as system engineering, mainframe computing, telecommunications,
data entry and Computer Output Microfiche, and dedicated resources.
Cost allocation allows IT to determine fair prices for the various services
provided to its customers. Thus, the Customer Billing and Allocation
Process serves to recover IT's costs for the IRM services provided.

The processing of cost allocation and customer billing data accumulated
from PARMS and FAST is processed and billed using a series of Lotus
spreadsheet files which require periodic manual updates to ensure the
data is current and accurate. For example, when processing system
engineering charges from PARMS, SEG prepares and submits to RMS, by
cc:Mail, a PARMS extract ASCII file summary of Full Time Position (FTP)
and contractor hours worked by customer, RON, WCF project number,
and system. The data file is subsequently loaded in Lotus that updates an
existing spreadsheet file. The hours are converted to dollar amounts using
preestablished billing rates loaded in Lotus. This forms the basis for the
system engineering amounts reported as part of the monthly chargeback
report to OFA. OFA subsequently transfers funds from program accounts
to the WCF to cover the costs and records and updates the General
Ledger in the Agency Accounting System (AAS).

HUD is aware of the need to implement an automated project cost
accounting and cost allocation system as part of the Agency Accounting
System, but this effort was postponed. The Chief Financial Officer had
planned to implement the Project Cost Accounting Subsystem

(PCAS)/Cost Allocation Application in FY 1995. However, this subsystem
was deferred to FY 1996 because of a 35 percent cut in CFO's FY 1995
budget. We strongly urge that the project cost accounting subsystem be
implemented as soon as possible. An automated project cost accounting
system will provide information necessary for management to control
software costs throughout its lifecycle.

HUD Needs To Develop A More Measurable Standard
Software Chart of Accounts For Managing Project Costs
HUD does provide a software chart of accounts for both development and
maintenance projects under PARMS. Development projects in PARMS
are categorized into the six phases of the software development lifecycle,
A through F, and identified as Initiation, Analysis, Design, Development,
Testing, and Implementation, respectively. Each year, IT establishes a
general maintenance project for each system for reporting most routine,
low level maintenance efforts.

PARMS also permits project leaders to record three additional types of
maintenance projects: Difficulty Report (DR), Technical Assistance (TA),
and User Assistance Request (UAR). The "DR" maintenance type has not
been used for several years. The "UAR" type is still in use but should be
relabeled "PTAR" to describe the kinds of system maintenance problems
identified by the Problem Tracking and Reporting System, A50, which
replaced the UAR problem reporting.

However, the chart of accounts in PARMS does not provide the granularity
needed for management to measure the economic impact of the major
costs associated with software development and maintenance. The chart
of accounts reflects phases of the software development lifecycle rather
than specific activities (e.g. Requirements, Initial analysis and design,
User documentation, etc.), that relate to a significant project milestone.
Also, the chart of accounts does not accumulate costs by the FIPS PUB
106 maintenance categories (i.e. perfective, adaptive, and corrective).
Consequently, management cannot adequately measure economic
activity and productivity for software development and maintenance
projects.

To more effectively manage IRM resources, HUD needs to establish
specific measurable activities that provide management with an accurate

accounting of software development and maintenance projects. Chapter
One of Capers Jones book on Applied Software Measurement identifies
six key quantifiable data elements that affect software projects:

The number of staff members assigned to a project;

The effort spent by staff members;

The schedule durations of significant project tasks;

The overlap and concurrence of tasks performed in parallel;

The project document, code, and test case volumes; and

The number of bugs or defects found and reported.

Capers Jones indicated that, technically, one can adequately track and
quantify the data by establishing a software chart of accounts for the tasks
which will normally be performed on software projects and then collect
data by task. However, he says the difficulty comes in recognizing that
current tracking systems tend to omit large volumes of unpaid overtime,
user effort on projects, managerial effort, and often many other activities.

Capers Jones states that one of the most frequent problems encountered
with project historical data that lowers accuracy is a simple lack of
granularity. Instead of measuring the effort of specific activities, the
tendency is to accumulate only "bottom line" data for the whole project
without separating the data into meaningful subsets, such as the effort for
requirements, design, and coding. Additionally, Capers Jones states that,
the breaking of software projects into specific phases such as
"requirements, design, coding, testing, and installation," results in a
cumbersome phase structure and is inadequate for cost measurement
purposes. Too many activities, such as production of user documentation,
tend to span several phases, so accurate cost accumulation is difficult to
perform.

Table I provides an example of the standard chart of accounts (i.e. cost
accumulators) illustrated in Capers Jones book when collecting project
data. It illustrates the kind of granularity by activity, rather than phases,

that is needed for historical data to be useful for economic studies. An
"activity" is defined as a bounded set of tasks aimed at completing a
significant project milestone (e.g. completion of requirements, completion
of a prototype, completion of initial design, etc). Although Table I uses
standard activities, it does not imply that only 25 things must be done to
develop a software package. Any given activity, such as requirements,
consists of various significant subactivities or specific tasks. However,
Capers Jones contends that a task-level chart of accounts tends to be
very cumbersome for cost accumulation since project staff must record
times against a very large number of individual tasks.

Cost Accounting Standards Need To Be Established For
Software Development and Maintenance Projects
Cost accounting standards for software development and maintenance
projects must be developed. Cost accounting standards provide
uniformity and consistency in the estimating, accumulating, allocating, and
reporting of project costs. Uniform and consistent application of cost
accounting standards throughout the project tracking and customer billing
and allocation processes provides management a means to qualitatively
and quantitatively evaluate and measure results against established goals.

We noted, however, that HUD does not have cost accounting standards
for software development and maintenance activities. The Director, Office
of Financial Policy and Evaluation stated that the implementation of cost
accounting standards, although needed in the long term, is not a high
priority item. However, cost accounting standards must be adopted so IT
system managers and program system owners can manage their IRM
costs more efficiently and effectively.

Maintenance Costs Are Not Properly Categorized
and Consistently Applied

$4.7 of System Engineering Software Maintenance Costs
Are Not Categorized In Accordance With FIPS PUB 106
FIPS PUB 106 indicates that software maintenance accounts for
approximately 60 to 70 percent of the application software resources
expended within the Federal Government. FIPS PUB 106 also
categorizes software maintenance into three functional classifications:

perfective, adaptive, and corrective.

As part of our review, we made a determination to identify the
maintenance costs for the seven systems based on the software
maintenance definition and functional classifications of FIPS PUB 106.
We believe that these functional classifications are essential for HUD to
properly manage costs related to software maintenance (See Chapter 3).
Project charges from PARMS are reported to RMS as either
"development" or "maintenance" categories. Accordingly, we asked the
various IT branch managers to review the project charges reported in
PARMS for their respective systems over the 18-month period ending
 March 31, 1994, and to reclassify the charges based on the definition
and functional classifications as identified in FIPS PUB 106. The results of
this review disclosed that the maintenance costs in PARMS differed by
$4.7 million for the seven systems (See Figures 2 and 3).

NOTE: Figure 2 shows the comparison of maintenance costs in system engineering that were recorded
in PARMS against what the costs should have been using the functional classification criteria of FIPS
PUB 106. Results show a $4.7 million difference in maintenance cost amounts. The dollar amounts
were derived by taking the hours in PARMS for the seven systems and using a fully loaded standard rate
of $47.50 and $48.00 that was used for billing under the WCF for FY 93 and FY 94, respectively.

NOTE: Figure 3 shows maintenance costs compared to development costs based on PARMS versus
FIPS PUB 106 classifications. The chart shows that maintenance costs per FIPS PUB 106 functional
classifications are almost the inverse of the costs recorded in PARMS and are more in line with the 60-70
percent Federal agencywide standard as indicated in FIPS PUB 106.

The primary reason for the significant difference in maintenance costs is that
projects are categorized as either maintenance or development based on criteria
and classifications that are not functionally segregated and consistent with FIPS
PUB 106. Further, we noted that the classifications used in both the project
tracking and customer billing and allocation processes were in themselves
inconsistent.

Under PARMS, "maintenance" projects are classified as those efforts to keep
the system running, to correct latent defects or to assist the user (i.e. corrective
maintenance per FIPS PUB 106). "Development" projects are classified as
work to create a new system or to modify an existing system to provide new
functions (i.e. perfective and adaptive maintenance per FIPS PUB 106). At the
beginning of each fiscal year, a PARMS auto-generated Project Control Number

(PCN) is established to create a general maintenance project for each system in
production. Project leaders are given broad latitude to use this project to record
system maintenance work performed on each system. In addition, project
leaders are also sometimes asked to establish a separate maintenance project
PCN to record work performed to resolve system Difficulty Reports (DR) or
User Assistance Requests (UAR) or to provide Technical Assistance (TA). All
other system engineering work is performed under separate "development"
PCNs. Development projects are projects initiated by an Advanced
Requirements Notice (ARN) or those classified as Non-ARN. ARNs are
submitted by the user requesting development of a new system or the
enhancement (i.e., perfective maintenance) of an existing system.

Further compounding this issue is the effect the IRM budget process has on the
categorization and classification of maintenance versus development costs.
Various IPS system managers and staff informed us that how projects are
recorded as maintenance or development is driven by IRM budget and funding
categories rather than any functional classifications. The maintenance and
development budgets were set by the Information Resource Management
Planning Board/Technology Investment Board (IRMPB/TIB) (Auditors Note:
The IRMPB became the TIB in FY 1994 with the functions and responsibilities
remaining the same). Maintenance budget projects are established and funded
based on an approved "Business Maintenance" discretionary funded line item in
the IRM budget. However, "Business Maintenance" at the IRMPB/TIB level
includes "fix it if it's broken" repairs and institutional changes (i.e. corrective
and adaptive maintenance). All other IRMPB/TIB approved priority projects,
which include system enhancements and modifications (i.e. perfective and
adaptive maintenance), are considered development type work and therefore
categorized under "development" type budget project numbers.

Consequently, most of the "maintenance" projects classified in PARMS and in
the IRM budget process are considered corrective maintenance per FIPS PUB
106, whereas any enhancements and modifications (i.e., perfective and adaptive
maintenance per FIPS PUB 106) are classified as "development" projects. This
results in a significant difference in the maintenance costs associated with each
system as reported under PARMS from what the maintenance costs would be
had HUD used the FIPS PUB 106 categorizations.

In times of budget cuts, managers are required to make painful decisions about
deferring software maintenance. Corrective and adaptive changes frequently

cannot be deferred. This leaves perfective changes as the source of
discretionary changes, which may have to be deferred for budgetary reasons. If
managers cannot identify which changes are corrective, adaptive, or perfective,
they cannot make effective decisions about software maintenance funding
priorities.

$3.18 Million in Maintenance and Development System
Engineering Costs Were Not Consistently Classified
Our review disclosed inconsistencies between what was classified as
development and maintenance system engineering costs under the project
management (PARMS) process and what was classified and reported to HUD
users under the WCF Statement of Services as part of the Cost Allocation and
Customer Billing process.

RMS receives a monthly PARMS report that identifies direct FTP and
contractor labor hours by user, RON, WCF project number, system, contract
and task. The report further breaks down the direct labor hours by
"development" and "maintenance" categories. These labor hours are converted
to costs based on a predetermined fully loaded hourly billing rate. IT uses this
data to bill the users shown in the WCF Statement of Services and to prepare
the chargeback report for OFA.

As part of our review, we reconciled and analyzed PARMS data, FAST data,
and WCF Statements' of Services for the 18-month period ending March 31,
1994 for the seven application systems. We traced and reconciled individual
projects under each of the seven systems to the applicable BPN and to the
appropriate project number and RON under the WCF.

As illustrated in Table II, we found a total of 66,843.4 hours identified under
development and maintenance budget categories in PARMS that were not
consistently classified with the RONs and project names under the WCF.
Consequently, $3.18 million of maintenance and development costs were
inconsistently classified between the project management and the WCF billing
and reporting processes.

Our analysis disclosed that 5,559.5 hours, with a dollar equivalent value of
$266,856, were reported as "Development" type system engineering project
work under six BPN's in PARMS. However, of these six BPNs:

Three (94-BM01-A43C, 94-BM02-AF97, and 94-BM02-CC97)
were classified and billed under the "Business Maintenance"
category both in PARMS and under the WCF;

Two (94-BD02-F47 and 94-BD03-F47) were classified under a
"development" budget category (i.e. BD) in PARMS, but were
classified, reported and billed in the WCF as "Business
Maintenance;" and

One BPN (94-BM01-HS97) was classified in PARMS as "Business
Maintenance" but under the WCF, it was classified, reported, and
billed as "System Development."

Additionally, our analysis also showed that 61,283.9 hours,
with a dollar equivalent value of $2,913,349, were reported as "maintenance"
type work under 10 BPNs in PARMS but were classified, reported, and billed
under the WCF as "System Development" work.

Maintenance Costs for Computer Usage and
Telecommunications Must Be Tracked
For the 18-month period ending March 31, 1994, computer usage and
telecommunications costs accounted for $29.4 million, or 72 percent, of the total
$40.8 million billed to HUD customers for IRM services for the seven systems
reviewed. We found, however, the current charge back system does not
separately identify computer usage and telecommunications costs associated
with software maintenance. As a result, HUD management does not have the
total software maintenance costs needed to make informed decisions on whether
to continue maintaining certain systems.

Monthly reimbursable costs for centralized information processing services are
billed to IT customers through the WCF Statement of Services. Computer
usage and telecommunications are reported under the Mainframe Computing
and Telecommunications resource categories in the customer Statement of
Services. Core Block Standard Unit of Processing (CBSUP) hours are used as
the service units under the Mainframe Computing and Telecommunications
categories for the Unisys mainframe platform. Computer Processing Unit
(CPU) hours and costs are used as the service units under the Mainframe
Computing and Telecommunications categories, respectively, for the Hitachi

mainframe platform.

CARMS is used to track and report computer usage charges on the Unisys
mainframe platform. CA-JARS is used to track and report computer usage
charges on the Hitachi mainframe platform. Under CARMS, computer usage is
segregated under only two computer accounts of production and development.
Computer usage from CA-JARS is reported based on various descriptive
accounts that are segregated primarily under the categories of development,
production, and testing. CBSUP hours are used for identifying combined CPU
time and file storage based on CARMS data. Data obtained from CA-JARS
identifies separate CPU time (hours) and file storage (Megabytes) for reporting
computer usage. However, neither CA-JARS nor CARMS separately identify
and report computer usage related to software maintenance.

IT is currently in process of implementing a BILLER-1100 computer resource
application package. This package is intended to replace CARMS and interface
with CA-JARS to provide a baseline off-the-shelf resource accounting package
which will form the hub of an integrated data collection system for computer
resource usage. In conjunction with this implementation, IT needs to establish a
maintenance account in this system which will be used to segregate and report
software maintenance computer usage. This is necessary since computer usage
and telecommunication costs represent a significant portion of HUD's software
engineering efforts. Without identifying and segregating maintenance costs
from development costs for computer usage and telecommunications,
management will not have the complete cost information to make informed
management decisions on whether to continue maintaining systems or whether
certain systems should be considered for redesign.
Lifecycle Costs Are Not Being Managed

Only System Engineering Work At The Application Level
Is Being Managed
OMB Circular A-109 requires that each agency maintain the capabilities to
predict, review, assess, negotiate, and monitor lifecycle costs. Lifecycle costs
are defined as the total of the direct, indirect, recurring, one time, and other
related costs, incurred or estimated to be incurred, in the design, development,
production, operation, maintenance, and support of a major system over its
anticipated useful life span.

HUD Handbook 2400.1, Information Resources Management Policies (IRM)
provides that IT is responsible for the direction and execution of HUD's IRM
program which includes, in part, reports management, computer operations and
maintenance, ADP budgeting and resource management, systems engineering
services, and long-range IRM planning. The Primary Organization Heads (i.e.
system users) and their staffs forecast future automation needs and priorities and
play key roles in the ADP planning and budgeting process in support of those
needs. The system users assess and identify their ADP requirements and
provide initial specifications for ADP systems and work in close coordination
with IT during the development, implementation, and ongoing operational
activities of these systems. The system sponsor is the HUD organizational
element where the functions of management and control of a particular system
reside. The sponsoring organization is responsible for system planning and
budgetary support. The IT branch manager is responsible for assisting users
with defining and providing cost estimates of future system requirements.

For the 18-month period ending March 31, 1994, approximately $40.8 million
was billed to HUD system users under the seven major information systems we
reviewed. However, we found that neither the IT branch managers nor system
sponsors could provide us with the total lifecycle costs for their respective
systems. Additionally, we noted that a only small portion of the $40.8 million
of costs billed to the users of the seven systems were being managed.

Our review disclosed that only system engineering work at the application level
is being managed. This work accounts for about $11.2 million, or 27 percent of
the total $40.8 million of billed costs. Computer usage, telecommunications,
and other costs, which make up the remaining 73 percent of the total costs, were
not being managed by either the IT branch managers or the system sponsors
(See Figures 4 and 5).

We were told by the system sponsors that they rely on IT to manage system
lifecyle costs and to provide them with cost estimates for system work
performed. One system sponsor, responsible for four of the seven systems that
we reviewed, indicated that they rely on IT to manage system engineering, CPU
time and other technical costs. Also, another system sponsor, responsible for
three of the systems we reviewed, indicated that they do not collect lifecycle
costs at their level and rely on IT to provide them with cost estimates for any
system development or major enhancements. When we discussed this issue
with the IT branch managers, however, we were told that the IT branch

managers do not manage total lifecycle costs. Further, the IT branch managers
indicated they only manage contractor and in-house system engineering costs
and do not manage the computer usage, telecommunications, and other costs.
By not adequately managing all system lifecycle costs, system managers cannot
properly plan and budget their IRM requirements or manage their projects in the
most cost effective and efficient manner.

NOTE: Figure 4 shows for each application the four cost categories billed to the WCF and the associated
costs. The IT branch managers and program system sponsors only track system engineering costs,
which represent only a portion of the total costs.

NOTE: Figure 5 shows the totals of the four cost categories from Figure 4 in a pie chart. The system
engineering costs managed by IT branch managers are cut out from the pie. The remaining 73 percent
of the costs are broken down on the right of the chart. This chart shows that three of the four cost
categories are not being managed by either IT branch managers or the system sponsors.

Cost Benefit Analyses Not Periodically Updated
OMB Circular A-11 requires agencies to prepare cost benefit analysis following
OMB Circular A-94 for all proposed investments, including those for
application systems. OMB Circular A-109 requires that periodic assessments
be made where significant costs and performance variances occur and provide
such assessments for consideration by the agency head at key decision points in
the lifecycle process. Also, OMB Circular A-130 requires agencies to prepare
cost benefit analyses for all application systems at a level of detail appropriate
to the size of the investment and update as necessary throughout the application
system's lifecycle. Further, HUD Handbook, 2400.1 REV 1, Information
Resources Management (IRM) Policies provide that cost benefit analyses,
including analyses of several alternatives, be performed for new information
initiatives and existing system modifications that are projected to cost more than
$5 million totally or more than $2 million in a single year.

Although HUD regulations require cost benefit analyses be performed, we
found that cost benefit analyses for major ADP projects are not periodically
updated as required by OMB Circular. The purpose of the cost benefit analysis
is to ensure that the most cost effective alternative that satisfies system
requirements is chosen. Without this analysis, it is not possible for system
managers to evaluate alternatives to satisfy their system requirements.

We found that none of the IT branch managers and system owners we
interviewed could provide us with a current, updated cost benefit analysis for
their respective systems, though three of the seven systems, A43C, A67 and F17

incurred costs exceeding $5 million during the 18-month review period.
Various IT system managers and system sponsers told us that a cost benefit
analysis is only performed when a system is initially developed and when major
enhancements or modifications are planned.

Although HUD's current policies and procedures require cost benefit analyses to
be performed, the policies and procedures do not address the need to keep these
analyses current. A majority of the IT branch managers explained that the
reason cost benefit analyses are not updated was because most of the major
enhancements and modifications are made due to changes in legislation and,
therefore, would have to be done regardless of the cost involved.

The reason cited for not updating cost benefit analyses is not valid. While we
realize that legislative requirements must be implemented, this does not
preclude one from considering the costs and economic and intangible benefits of
several alternatives for satisfying a particular requirement. For example, when
new requirements are placed on a system, besides modifying the existing
system, other alternatives such as building a new system or buying a
commercial software package should be considered. It may be more efficient
and economical to buy or use already developed software than continually
modifying an existing application to satisfy changing requirements. These cost
benefit evaluations, with other studies, provide managers and users with the
information necessary to make the most efficient and cost effective decisions on
the allocation and use of limited IRM funds.

Recommendations

Chief Financial Officer
2 (a) Expedite the implementation of the Project Cost Accounting

System (PCAS)/Cost Allocation Application.

2 (b) Establish cost accounting standards to ensure maintenance and
development project costs are uniformly and consistently
accumulated, tracked, allocated, and reported for management and
billing purposes.

Acting Director of Information Technology, Through the
Technology Investment Board

2 (c) Establish a software maintenance definition that can be uniformly
and consistently applied throughout HUD's project accounting and
cost allocation and billing processes that meet the intent of FIPS
PUB 106;

2 (d) Establish appropriate software maintenance classifications that, as a
minimum, include the three categories described in FIPS PUB 106;

2 (e) Establish a more measurable software chart of accounts that
describe specific development and maintenance activities needed to
gain economic insights into the major costs associated with
software; and

2 (f) Establish guidelines and define management responsibilities for
capturing all system lifecycle costs to include updating the required
cost benefit analyses at appropriate, defined, and periodic intervals.

Acting Director of Office of Information Technology
2 (g) Establish a descriptive maintenance account within the integrated

resource accounting system Biller 1100 to capture software
maintenance computer usage costs.

Auditee Comments and OIG Response
In its response to our draft report, IT fundamentally disagreed with OIG's
conclusions on using FIPS PUB 106 classifications (i.e. adaptive, perfective,
and corrective) when tracking maintenance costs and activities throughout the
systems lifecycle. During the August 30, 1995 meeting with IT, the OIG agreed
with IT that the terminology used for classifying maintenance costs could be
different but the underlying FIPS PUB 106 classifications and definitions are
still valid. This is supported by the fact that organizations, who are serious
about cost containment and measuring software processes and their business
value, utilize these same FIPS PUB 106 classifications. For example, the
September 1995 issue of IT Metrics Strategies, identifies perfective, adaptive,
corrective, and preventive maintenance work types for use in measuring the
amount of application development and maintenance work performed by an
organization. Also, as noted in Appendix E, a recent study that analyzed the
software maintenance process in the European space industry used the same
classifications but in a more precise and specialized way. We do not suggest

that these classifications are all inclusive. Rather, IT should use these
classifications as a starting point and develop, if necessary, additional work type
categories and classifications for managing their software lifecycle costs.

Chapter 3

Numerous Controls Needed For
Application Software Changes

HUD spends over $110 million each year to provide information systems
services, including operation, development, and maintenance of application
systems supporting program activity controlling hundreds of billions of dollars
in assets, insurance, and subsidies. Controlling the changes to the software of
these systems is essential to keep them functioning and responsive to user
needs. OMB Circular A-130 makes management of information systems a
shared responsibility. The program manager is responsible for obtaining the
information system(s) necessary to fulfill the mission, and the information
technology service provider must provide adequate technical support. Despite
Federal guidance, we found management weaknesses in all seven HUD
application systems we reviewed. Program and functional offices, as system
owners, have not: (1) established centralized approval and review of changes,
(2) developed a maintenance schedule (3) defined standard classification of
changes, and (4) performed sufficient user testing and acceptance of software
changes. In addition, the Office of Information Technology (IT) has not defined
the software maintenance process, measured the performance of maintenance
activities, or defined quality assurance goals. IT also has not implemented a
process for systematically controlling changes to the configuration, and
maintaining the integrity and traceability of the configuration throughout the
software lifecycle.

Deficiencies in software change controls have resulted in a significant amount
of production problems during maintenance. An IT study of change releases
concludes that release-related problems are costly and that release-related
activity represents an important cost factor to some systems, including two of
the systems in our audit. The study suggests that costs related to release activity
and release-related problems be reported to the users. The results of the IT
study suggest that established review and testing procedures fail to prevent
release-related problems, and perhaps contractor performance could be
improved (see Chapter 4). These errors could also indicate that these systems
have become unstable or unreliable and need to be replaced.

The deficiencies in managing software changes are attributable to system
owners not taking responsibility for managing application systems needed for
successful conduct of the program mission. These deficiencies are exacerbated
by a lack of a software maintenance policy. Additionally, performance
measures have not been established to aid management in determining the
quality of software after changes are made.
Focus of the Change Control Finding
We collected and analyzed release data for seven application systems. While
there have been instances of problems attributable to deficient management of
software changes, we agreed with the IT managers that analyzing the
performance data in aggregate, to determine what preventive controls are
needed, is more beneficial than focusing on isolated past incidents.

We have also used tables and charts in this Finding to illustrate possible
measurements that can be used for evaluating software maintenance. These
measurements include the number of release requests for the same change
request, number of changes to a program, number of problems reported, etc.
We offer these examples as a starting point for defining performance measures.
Appendix C discusses in detail the software measurement process, and presents
information on how the process works and how it can be used by HUD
managers to control quality and productivity.

OMB Circular A-130 states that program managers are responsible for
acquiring the necessary technical and operational support of their application
systems to carry out their programs. A technical support organization such as
IT has a responsibility to meet their service and infrastructure commitments to
their program clients. This makes a process such as software maintenance a
shared responsibility, with IT providing the infrastructure and the software
maintenance service, and the program offices responsible for managing the
product--the information system being maintained.
Federal Requirements and Guidance and Other
Criteria

We used the following list of Federal requirements and guidance to conduct our
audit in the area of software change control and configuration management. We
also used a number of publications on industry-accepted practices to evaluate
software maintenance activities. Appendix B contains a summary of the
following criteria:

Public Law No. 99-511 (94 stat 2812), The Paperwork Reduction Act of
1980;

Public Law No. 99-591 (100 stat 3341-335), The Paperwork Reduction
Reauthorization Act of 1986;

Public Law No. 103-62 (107 stat 285), The Government Performance
and Results Act of 1993;

OMB Circular No. A-130, Management of Federal Information
Resources;

FIPS PUB No. 38, Guideline for Documentation of Computer Programs
and Automated Data Systems;

FIPS PUB No. 106, Guideline on Software Maintenance;

FIPS PUB No. 132, Guideline for Software Verification and Validation
Plans;

National Bureau of Standards Special Publication 500-129, Software
Maintenance Management;

GSA Guide for Acquiring Software Development Services;

HUD Handbook 1100 series, Administration;

HUD Handbook 2400 series, Information Resources Management;

Applied Software Measurement, Assuring Productivity and Quality by Capers
Jones;

Making Software Measurement Work, Building an Effective Measurement
Program by Bill Hetzel; and

Capability Maturity Model for Software, version 1.1, Software
Engineering Institute.

System Owners Must Manage Their Software
Changes

OMB Circular A-130 states that program managers are responsible for
acquiring the necessary technical and operational support of their application
systems to carry out their programs. Our review of software maintenance finds
that program offices rely on IT for software maintenance services and exercise
only limited management over the service. Program offices do not routinely
monitor the changes that they are requesting to an information system or
classify changes to facilitate historical reviews. Maintenance activities are not
scheduled to provide stability and predictability. Finally, program offices do
not routinely evaluate test results.

Process is how we go from the beginning to the end of the project. Key
processes associated with the management of software development and
maintenance include requirement management and software configuration
management. Under requirements management for each information system,
responsibility is established for analyzing the system requirements and
allocating them to hardware, software and other system requirements.

Software Configuration Management (SCM) implies that a board having the
authority for managing the project's software baseline (i.e., a software
configuration control board--SCCB) exists or is established (IT should
participate on the board as a technology consultant). Members of the SCM
group are trained in the objectives, procedures, and methods for performing
their SCM activities. The software work products to be placed under
configuration management are identified. Changes to baseline are controlled
according to a documented procedure. Change requests and problem reports for
all configuration items are initiated, recorded, reviewed, approved, and tracked
according to a documented procedure.

Centralized Change Review Is An Important Control
According to FIPS PUB 106 a key to controlling changes to an application
system is the centralization of change approval and the formal requesting of
changes. A centralized approval process within the application owner
organization will enable one person or a group of persons to gain the knowledge
of all the requested and actual work being done on the system.

None of the seven application systems we reviewed had a centralized change
review process. A centralized review process can prevent the following from
occurring:

Similar enhancements to the system are processed individually
rather than combined, which results in wasted resources from
duplication;

A proposed software change is made without evidence of an audit
trail;

A proposed software change is made without sufficient impact
analysis and creates problems for other software components of the
application;

A software change is made that provides limited benefits; and/or

A proposed change of lesser importance is made ahead of more
significant and necessary modifications.

Historical Review Can Help to Identify Problems
One of the important activities necessary to control change is the analysis of
problem reports and software changes. We found no instances where system
owners periodically conducted systematic reviews of software changes to
discern performance patterns or trends. Available tracking systems did not
contain a level of data sufficient to facilitate informative trend analysis of the
effects of prior software changes.

The analysis of problem reports and software change requests provides an
informed perspective on the performance trends of the information system. A
formal process is needed to ensure that requests for system changes, as well as
system problems, are reported and documented in a standard manner. The data
gathered by a change request and problem reporting system can be used to
describe the effects of software changes on the quality of a system. The
benefits of using historical change control and problem data enable managers to:
(1) identify modules that experience a high degree of problems requiring
corrective changes; (2) identify modules repeatedly reworked due to
deficiencies in contractor performance; (3) identify modules requiring rework

due to problems in testing and review procedures; or (4) determine whether it
would be more cost effective to redesign than continue maintaining these
modules.
IT Study Can Be Used As a Model For Historical Review
The IT Quality Management Staff (QMS) provides a model of the type of
analysis program officials can make for each application system supporting the
program mission. From September 1994 through December 1994, QMS
conducted a review of the processes and procedures used to install software
changes or releases on the HUD mainframe computers. The major objectives4

of the study were to understand how well the Standard Release Procedures are
working, to identify and understand relationships between software releases and
subsequent production problems, and to recommend actions that might improve
processing of software releases. This review included:

Interviews with IT and contractor staff;

Examination of all release requests submitted to Computer
Management Division (CMD) between January 1 and August 31,
1994; and

Review of Problem Tracking and Reporting System (PTARS) and
release requests associated with release-related problems.

The review disclosed the following:

During this period there were 158 routine releases (42 percent) and
218 emergency releases (58 percent);5

51 percent of all release requests indicated that the release was
intended to correct a problem;

16 percent of all releases resulted in a problem;

63 percent of the problems resulted from emergency releases;

42 percent of the problem releases were from releases submitted
within the same day or within 24 hours of the requested release
date; and

Of the releases studied, 26 caused a total of 44 additional releases.

The review reached the following conclusions:

Majority of the software releases did not result in production
problems;

Release-related problems are costly, and should be reduced;

Release-related activity represents an important cost factor for
some application systems; and

Additional attention is needed to improve management of releases.

While the IT review covers a shorter time span within the scope of our review,
they have taken a broader sample of applications and completed a more
thorough review than we have. This was a comprehensive review which
achieved its objectives and produced valuable insights into software release
procedures. Therefore, we have relied on IT's detailed analysis of these release
requests as well as our own analysis to provide indicators of potential problems.
However, the IT objective of recommending actions to improve processing of
software releases limits the benefits of the analysis. Using the study to focus on
improving the software change process would automatically reduce release-
related production problems.

Another Example of Historical Review
Experience has shown that sources of potential efficiency improvements and
sources of errors are rarely uniformly distributed across all modules of a system.
Routine assessment of historical information would help system owners to
identify programs or processes that may be candidates for redesign. For each
information system we reviewed, we analyzed the release elements of the CMD
Release Request, and tallied the number of times each program was placed into
production. We have used the Computerized Homes Underwriting Management
System (CHUMS) to illustrate a system in which several key programs are
affected by every system change, and not to suggest that we have identified a
problem with CHUMS programs.

NOTE: Figure 1 illustrates the software modules most frequently changed for the F17
CHUMS application. During this period, 275 changed modules were placed into
production. The 11 CHUMS modules shown in Figure 1 account for 80, or 30 percent,
of the module changes.

Without routine assessment of historical information, system owners cannot:

Determine existing maintenance problems or detect their probable
cause(s);

Assess the overall stability of the system;

Identify programs or modules that are routinely modified/reworked;

Make informed decisions about the future of the system, its
impending obsolescence, or necessary redesign of the application
system; and

Assess whether unnecessary or inefficient effort was expended or
rework is evident for previously reported problems. Both could
contribute to excessive maintenance costs.

Lack Of Scheduled Maintenance
IT has standard procedures for releasing application software to the HUD
Integrated Information Processing System (HIIPS) production environment.
The schedule of releases is on a Tuesday-to-Tuesday cycle. To release software
changes on Tuesday, the request must be received by the previous Tuesday.
Any request outside of this cycle constitutes an emergency. However, this
schedule provides stability for the HIIPS production environment but not the
application systems of the individual program office. All seven applications we
reviewed lacked planned maintenance where software changes are placed into
production following a schedule.

Scheduled maintenance activities furnish users with periods of stable operation
and expected system performance. When changes are planned and implemented
according to a maintenance schedule, users can be informed of pending changes
ahead of time and receive appropriate instruction on new or revised operating
procedures or functional capabilities. Additionally, limiting implementation of

software changes to regularly scheduled events enables management to
maintain version control over the numerous modules/programs that comprise
each of the application systems.

Without a schedule, maintenance can result in continuous software
modifications which contribute to the instability of an application system.
When a system of interrelated programs, modules, and tables are continuously
modified, ensuring proper and effective version control becomes difficult. This
can complicate a return to a prior software version should a software change fail
after being placed into production.

NOTE: Figure 2 shows the software changes to F17 CHUMS from 1/1/93 to 6/30/93. The project
leader indicated that the spikes on the chart correspond to new releases. Frequently the
temporary increase in PTARS represents field office users unfamiliarity with the revised system.

Figure 2 provides an example of a historical review which shows the need for
scheduled maintenance. For each information system we reviewed, we
analyzed the release elements of the CMD Release Request, and the PTARS
associated with the system. Graphically presenting software releases against a
background of PTARS may provide indications of the impact of new operating
procedures, changing data input requirements, varying screen presentations, and
new or modified system functions or reporting capabilities. Figure 3 is an
example of random releases without a maintenance schedule which can cause
operational problems for the users.

NOTE: Figure 3 shows the release of F72 TIIS software into production and the number of
release elements associated with each release. Note the near continuous release of small
changes to the software.

No Standard Classification Of Changes
System owners have not classified changes in a manner that would facilitate analysis of
software maintenance trends. None of the seven application systems we reviewed had used
the classification types suggested by Federal criteria for categorizing the change requests.
Instead, the change requests were based on the level of effort involved with the maintenance
activity and arbitrarily assigned either as development or maintenance projects (see Table 1 of
Chapter 2).

We reviewed CMD Release Requests for the seven systems in our review. We looked for
indications that the release was justified as a correction to a prior release (omission,
restoration of old version, release). A summary of this analysis is presented in Table I. Table

I identifies some of the effects that were discussed in the previous paragraph. While this is
not a comprehensive or statistically valid sample, the analysis shows enough rework to justify
closer examination. FIPS PUB 106 indicates that approximately 20 percent of all changes are
error correction, 20 percent are initiated in response to changes in the environment (e.g.,
legislative changes), and the remaining 60 percent are made to meet the evolving needs of the
users.

NOTE: The correction releases in Table I refer to emergency corrections to software that have
just been tested and approved for release into production operation, but failed to work properly.
We have made no attempt to identify all correction releases, but only those identified by the project
leader as corrections on the CMD Release Request form.

Insufficient Testing And Acceptance By Functional Users
Out of seven IT project leaders we interviewed, only two obtained review and
approval of test results from program office counterparts before requesting the
changes be made. Normally the IT project leader reviews and approves the test
results. Responsible program offices in general do not perform a functional
assessment of the modified software to ensure: (1) only authorized work was
completed; and (2) that all requirements of the change request had been met
and the system functioned according to specifications. Without a functional
acceptance test, program managers have no assurance that perfective or
corrective changes made will satisfy the user needs when placed into
production. This increases the risk that the changes will waste time and
resources.

Commonly, functional users do "acceptance " testing after system testing has6

been completed. The software maintenance process is not considered complete
until the user has accepted the modified system and all documentation has been
satisfactorily updated.
IT Must Manage Software Maintenance Process

IT provides information management services in Headquarters, Regional, and
Field Offices. The office provides ADP systems development and maintenance
services, including vendor-developed software packages. Our review finds that
software maintenance services are delivered in an informal and inconsistent
manner. IT has not defined software maintenance consistently with Federal
guidelines; adopted a single change request form; established a tracking process
based on measurement; conducted adequate testing of software changes;
performed independent verification and validation testing; or established formal
software configuration management even though IT has purchased the

ENDEVOR configuration management tool.

OMB Circular A-130 states that a technical support organization such as IT has
a responsibility to meet their service commitments to their program clients.
FIPS PUB 106 states that management is clearly one of the most important
factors in improving the software maintenance process. A complete
management system includes a performance monitoring feedback loop with
successive cycles of goal setting, performance monitoring based on
measurement, analysis of results, review against the goals, and reporting.

FIPS PUB 106 states management must examine how the software is
maintained, exercise control over the process, and ensure that effective software
maintenance techniques and tools are employed. The Software Engineering
Institute defines key process areas whose implementation leads to quality
improvements in the process of delivering information systems. Key processes
corresponding to FIPS Pub 106 requirements for management of software
maintenance are software tracking and oversight, software quality assurance,
and software configuration management.
Software tracking and oversight involves tracking and reviewing the software
accomplishments and results against documented estimates, commitments, and
plans, and adjusting these plans based on the actual accomplishments and
results. A software maintenance plan is prepared, managed, and controlled (i.e.,
version control and change control on the plan) for tracking the software
activities and communicating status. Approved changes to commitments that
affect the software project are communicated to the members of the software
engineering group and other software-related groups.

Project tracking implies measurement and the tracking of costs at a detail level.
The Software Engineering Institute suggests several relevant measurements, for
example:

The size of the software work products (or the size of the changes
to the software work products) are tracked, and corrective actions
taken as necessary;

The project's software effort and costs are tracked, and corrective
actions taken as necessary;

The project's critical computer resources are tracked, and corrective

actions taken as necessary;

The project's software schedule is tracked, and corrective actions
taken as necessary;

Software engineering technical activities are tracked, and corrective
actions are taken as necessary;

The software risks associated with cost, resource, schedule, and
technical aspects of the project are tracked; and

Actual measurement data and replanning data for the software
project are recorded.

The software engineering group should conduct periodic internal reviews to
track technical progress, plans, performance, and issues against the software
development plan. Formal reviews to address the accomplishments and results
of the software project are conducted at selected project milestones according to
a documented procedure. Software project commitments and changes to
commitments made to individuals and groups external to the organization are
reviewed with senior management according to a documented procedure.

Software quality assurance provides management with visibility into the process
being used by the software project, and the products being built by the project.
Software quality assurance activities assure that adherence of software products
and activities to the applicable standards, procedures, and requirements is
verified objectively. A Software Quality Assurance plan is prepared, managed,
and controlled (i.e., version control and change control on the plan) for each
information system according to a documented procedure. Affected groups and
individuals are informed of software quality assurance activities and results.
Noncompliance issues that cannot be resolved within the software project are
addressed by senior management.

Software configuration management involves identifying the configuration of
the software; systematically controlling changes to the configuration; and
maintaining the integrity and traceability of the configuration throughout the
software lifecycle. A Software Configuration Management plan is prepared,
managed, and controlled (i.e., version control and change control on the plan)
for each information system according to a documented procedure. A

configuration management library system is established as a repository for the
software baseline. Products from the software baseline library are created, and
their release is controlled according to a documented procedure. The status of
configuration items is recorded according to a documented procedure. Standard
reports documenting the SCM activities and the contents of the baseline are
developed and made available to affected groups and individuals (e.g., the
SCCB and the project leader). Software baseline audits are conducted
according to a documented procedure.
Definition of Software Maintenance Inconsistent With
Federal Guidelines
HUD's System Development Methodology (SDM) defines maintenance as the
necessary activities performed to keep the system operational and responsive
after it is placed into production. The system is monitored and post-
implementation reviews are done to ensure that it is performing at an acceptable
level. Corrections, deletions, modifications, and enhancements are performed
on the system's hardware and software whenever it falls below the level of
acceptable performance or when the level of acceptable performance is
amended. IT's definition of software maintenance has not been formalized, and
IT officials agree that this lack of formal definition leads to inconsistencies.
IT's definition provides very little information about the sources of changes to
the system.

FIPS PUB 106 identifies the three following categories for monitoring and
controlling software maintenance activities: corrective , adaptive , or7 8

perfective . While specific terminology may vary, classifying software changes9

into the three FIPS categories would facilitate meaningful analysis of
maintenance data and focus on areas needing attention. For example,
"corrective" maintenance customarily accounts for 20 percent of software
maintenance and encompasses design, logic, and coding errors. Consequently,
system managers noticing a 40 percent corrective maintenance rate would be
alerted to existing or potential problems regarding program design flaws or
coding errors and/or inadequate testing or review of changes. In general, IT has
classified maintenance as making corrective changes.

None of the seven application systems reviewed distinguished proposed
changes as "adaptive." Adaptive changes include changes in laws and
regulations, as well as hardware configuration and system software
configuration. Adaptive changes are often beyond the control of the software

maintainer because they must be made in order to adapt to the changes in the
system's environment. However, in practice these external changes are seldom
accomplished without extensive coordination. A manager who can demonstrate
the frequency of external changes, supported by accurate cost and schedule data
and an assessment of the impact on service delivery, may be able to influence
the timing of the change or obtain additional resources necessary to meet the
schedules.

Changes, insertions, deletions, modifications, extensions, and enhancements
which are made to the system to meet changing user needs represent the
evolution of the information system. They generally make the system more
responsive to the way users do their work. They are generally discretionary in
nature. In times of budget cuts, when choices must be made, corrective and
adaptive changes frequently cannot be deferred because the system cannot
function properly without such changes. However, perfective changes or
enhancements can be considered discretionary and deferred.

The European Platform for Software Maintenance (EPSOM) presented a
generic software maintenance process (Figure 4) to the Conference on Software
Maintenance in 1992. We include this generic software maintenance process in
Appendix E as a well-defined reference model for HUD's definition of its own
software maintenance process. We view most of the activities in this model as
shared activities, with IT providing the technical input to the activity and a user
change control board making the decision to proceed to the next activity.

In order to categorize the various kinds of activities performed as "software
maintenance" and to enable a deeper analysis of the various tasks carried out in
the software maintenance process, EPSOM has adopted a more precise
classification of maintenance activities--effectively specialized instances of the
three FIPS PUB 106 classifications. For example, EPSOM defines anticipative
maintenance as those changes made to software in anticipation of a problem, e.g.,
changes made now to adapt the software for the potential disaster associated
with the year 2000, making anticipative maintenance a specialized instance of
adaptive maintenance. A possible confusion is that EPSOM uses the term
evolutive maintenance to describe changes to meet the evolving requirements of the
users, corresponding to the FIPS PUB 106 classification perfective maintenance.
They then use the term perfective maintenance to refer to non-functional changes,
e.g. response time, execution time, memory size, etc.

If managers cannot identify changes as corrective, adaptive, or perfective, they
cannot make informed decisions on software maintenance priorities. Based on
the current types of classifications used to distinguish requests, HUD system
managers cannot identify trends for budget purposes, or point out weaknesses in
the change control process. In addition, management lacks insight regarding the
true nature of the proposed change (adaptive, perfective, or corrective) and
cannot evaluate the stability of the application system or the need for
replacement. Without proper classification, the following types of problems can
remain undetected under current circumstances:

Weaknesses in established review and testing procedures;

Poor contractor's performance resulting in rework of continuing
problem;

Degrading software performance; or

Excessive maintenance costs for a particular type of software
change.

Single Change Request Form Needed
During the interviews with the project leaders, we found that although
numerous change request forms exist, the user community prefers to initiate
changes by telephone call, or cc:Mail. Project leaders sometimes must insist
that users call the User Assistance Branch to open a PTAR. However, some
project leaders initiate system changes based on the telephoned request from the
user.

FIPS PUB 106 states that a formal, well-defined mechanism must exist for
initiating requests for change or enhancement of a system. All changes should
be formally requested in writing and submitted on a standardized request form.
The decision and reasons for acceptance/rejection of a change request also
should be recorded and included in the permanent documentation for the
system. A standardized form ensures adequate information is available for
classifying, reviewing, and processing change requests. A standardized form
can also be used for measuring maintenance activities.

HUD Handbook 2400.15 defines the following request forms to initiate
software changes:

Advanced Requirements Notice (ARN) initiated by the user to
initiate enhancement of existing systems due to:

Legislative and/or regulatory developments (adaptive
maintenance); or

User initiative (perfective maintenance);

User Assistance Request (UAR) initiated by the user notifying the
Computer Systems Group (CSG) that a production problem has
occurred (corrective maintenance);

Difficulty Report (DR) initiated by CSG for reporting execution
errors (corrective maintenance); and

Teleprocessing Assistance Request (TAR) notifying CSG that the
user has encountered a teleprocessing problem and requests
technical assistance.

Note that while the UAR, DR, and TAR have been eliminated by IT they still
exist as official standards for documenting problems, errors, and requests for
enhancement. As reflected in Table II, two of these forms were being used
during the period of our review.

Additionally, the Project and Resource Management System (PARMS) defines
the following tracking numbers which are used in lieu of a request form:

A job control number (JCN) is provided to the support branch to
identify work efforts not initiated by an ARN; and

A project control number (PCN) is assigned to a work effort for
tracking in PARMS.

Our analysis of Computer Management Division (CMD) Release Requests, see
Table II, shows that project leaders cite a wide variety of request types to
initiate the release of software changes into production. Forty-five percent of

When you can measure what you are speaking about, and express it in numbers, you
know something about it; but when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory kind.

- Lord Kelvin

the change requests used the three request forms defined in HUD Handbook
2400.15. Another 17 percent are based on the PTARS system. However, the
remaining 38 percent do not conform to any of these request types.

If standardized change request forms are not used to record proposed changes,
sufficient data may not be available to adequately evaluate the nature of a
proposed software change or its resulting benefits, cost, or impact on the
application system. Approved changes could be misclassified or ranked
inappropriately due to insufficient information. In addition, valuable time and
resources could be wasted by management in trying to discern the nature of the
requested change or returning a request for further information.
Project Tracking Not Based on Measurement

Performance Measurement Indicators Must Be
Established
System owners have not established performance measures for software
changes to aid in determining how well their application systems are being
maintained. IT collects performance data in the PTARS. The system is used
for recording problems, assigning problems for resolution, tracking progress on
problem resolution, and assisting analysis of problems. IT uses this system to
prepare the following workload and performance indicator reports monthly:

Number of problem tickets recorded for the month, displayed by
Headquarters and Regions;

Historical analysis showing the number of days required to close a
problem ticket, shown by month for a year;

A frequency analysis of problem types (41 service requested codes)
and solutions (39 service performed codes); and

An analysis of equipment failure rates.

However, PTARS produces operational reports providing limited information
on the effects of software changes. PTARS has no data on the measurable
indicators such as the number of software problems, changes, types of changes,
number of changes to each module, etc., that can be used to quantify the
outcome of the change control process. Also, although various types of
historical data were recorded in change control logs, discussions with IT
application project leaders disclosed that the collected data were not used for
measuring performance in software changes.

Performance measures must be established in any effort, including software
development and maintenance, in order to evaluate the outcome. Managers
make decisions on the basis of the best information available. A complete
management system includes a performance monitoring feedback loop with
successive cycles of goal setting, performance monitoring, and regular
reporting. Such a system requires regular, efficient information collection,
analysis, and review. A performance measurement system simply formalizes,
makes more efficient, and makes explicit the decision-making process managers
use intuitively. Such a system forces managers to confront hard evidence about
program efficiency and effectiveness.

Without defined measurable performance indicators, system owners and IT
personnel who provide technical support do not have the necessary management
tools to: (1) evaluate the effectiveness of their change control process; (2) assess
the overall stability of the application system; or (3) draw conclusions as to how
resources should best be utilized. Consequently, system owners and IT system
managers do not have the benefit of valuable information for making decisions.

As such, software maintenance for HUD's numerous application systems may
be managed in an inconsistent and erratic manner. Under current procedures,
unapproved modifications, unintentional, malicious and/or fraudulent insertions
of source code, or poorly structured or inadequately tested program code can
proceed undetected through the change process. (See subsection Test Plans
And Analysis Of Test Results Are Not Routinely Prepared).

Most measurement programs use defect counts. A defect is something wrong
that needs to be fixed. Bugs and problems are recorded in a tracking system to
make sure they do not get lost or forgotten. Whenever a problem is discovered,

a problem record is "opened" and basic data about the problem (i.e., activity or
phase, symptom, suspected cause, and type or classification) is recorded. After
the fix is "approved," a change is prepared and tested, and the problem can be
"closed." Upon closing, additional data is usually entered into the record (i.e.,
actual cause, source of the problem, and effort to fix). Appendix D provides
additional discussion of software measurement.

Analysis of defects can lead to improvements to the software process. Such
improvements can contribute to higher customer satisfaction, fewer emergency
repairs to the software, and higher software support productivity. Classifying
defects into the following categories points to specific parts of the development
process and makes possible an analysis of defect-removal efficiency at each
stage of the system lifecycle:

Category 1 defects include those detected by computer operations;
typically these include abnormal terminations (ABENDS in the
mainframe environment) and out-of-balance conditions.

Category 2 defects include those reported by a customer after a
system is used in production. These include all failures to comply
with requirements. Examples are improper functionality,
computational errors, and failures to meet performance constraints.
Category 3 defects are those detected by the developers during the
testing phases of the system lifecycle. This cycle is bounded by the
release of the software into production usage.

Category 4 defects include those detected by the developers prior to
testing. These are typically detected in quality assurance activities
such as reviews, inspections, and walkthroughs.

Causal analysis of defects leads to improvements in the development, testing,
and inspection processes. Defects in categories 1 and 2 reflect the overall
failure of the System Development Methodology to detect and remove
significant defects prior to release. Defects in category 3 reflect the failure of
quality assurance processes prior to testing. Defects in category 4 reflect
failures in the early phases of development such as unclear user specifications.

Process improvements are achieved when management uses its knowledge of
defect causes to change processes. Category 1 and 2 defects should lead to

intense management scrutiny of the System Development Methodology and its
project management for the project or system experiencing these defects.
Category 3 errors should lead to a more active quality assurance process to
detect defects early. Category 4 defects should lead to preventive measures
designed to reduce the introduction of defects, e.g., new analysis tools or more
user involvement in the specifications.

Testing to Control Quality Must Be Strengthened

Test Plans And Analysis Of Test Results Are Not Routinely
Prepared
During our review, only two of the seven IT project leaders provided us with a
Test Plan and a Test Analysis and Results Report. Only two of the project
leaders indicated that test results were reviewed and approved by the user before
a change was put into production. Most of this documentation does not define
how testing will be conducted or what are the expected results. The other IT
project leaders were unable to provide documentation that testing of software
changes was conducted and evaluated during our review period.

Using the IT Quality Assurance Staff analysis, we found the following
indicators of insufficient testing:

Sixteen percent of all releases resulted in a problem;

Twenty-seven percent of large releases resulted in one or more
problems (nine percent of all releases were large releases, meaning
that they had more than 24 release elements); and

HDS, DB2, IEF, and MAPPER releases have a higher rate of
problems than the average of all releases.

Although 84 percent of the software releases did not result in production
problems, 16 percent of all releases created new problems that were costly in
terms of IT and program office staff impacts. Specifically, 26 releases resulted
in 44 re-releases to correct one or more problems with the previous release. This
implies that emergency corrections had to be made to software changes that
failed to work properly after having been released into production operation.
Each software release was tested and approved by IT change management

procedures for release into production operation. These statistics support a
conclusion that established review and testing procedures are inadequate, and
perhaps contractor performance could be improved.

QMS also reported that 51 percent of all release requests indicated that the
release was intended to correct a problem. These problem correction rates are
much higher than defined as normal by FIPS PUB 106, suggesting information
systems that are not stable or reliable, and should be evaluated for replacement.
However, as we have noted, IT does not define and classify software
maintenance in accordance with FIPS PUB 106. Therefore, it is likely that
some percentage of these releases classified as corrections would have been
classified as adaptive maintenance if FIPS PUB 106 definitions had been used.
However, the 51 percent of all release requests for which the release was
intended to correct a problem is still higher than FIPS estimates for corrective
and adaptive maintenance combined. This supports the need for accurate
classification, measurement, and causal analysis discussed in the previous
section.

Testing is a critical component of software maintenance. Testing procedures
promote software maintainability, quality, and system integrity. As such, the
test procedures must be consistent and based on sound principles. If project
leaders do not document the strategy and limitations of testing, changes to
software may not be tested sufficiently to account for all valid, invalid,
expected, and unexpected outputs. The contractor executing the tests may not
recognize the relevant limitations on the test because of the test conditions.
Test results will then be interpreted as conclusive when, in fact, they do not
represent what will happen in production environment. Similarly, not all
functions of proposed software changes may be tested. Insufficient testing and
analysis of test results might result in source code that fails when introduced to
the production environment, due to unforeseen transaction conditions,
interfaces, or user input.

During the test stage, the software and its related documentation should be
evaluated for production readiness and implementation. The goal of testing is to
find errors and/or performance problems, and, therefore, a test plan should: (1)
define the degree and depth of testing to be completed; (2) describe the expected
results; and (3) test for valid, invalid, expected, and unexpected cases. Federal
guidelines outline the format and content of test plans and test analysis reports,
and emphasize the importance of:

Identifying and segregating the various functions of the program to
be tested;

Describing the strategy and limitations of the testing; and

Describing the source data and expected result data for each
planned test.

Lack Of Verification And Validation Testing
HUD's SDM does not require software verification and validation (V&V)10

testing during the software maintenance phase. V&V testing is described in the
SDM as unit, integration, and systems tests to be conducted by the developers
and the users during the Design Phase. None of the project leaders for the seven
application systems we reviewed required V&V testing of software changes.

Also, HUD's V&V testing does not follow the intent of FIPS PUB 132 which
requires V&V testing be conducted independently of the system development
testing. Even if the software was not verified and validated when originally
developed, under FIPS Pub 132 a new V&V plan should be developed to test
modifications made during the lifecycle's maintenance phase.

V&V testing should be done for both critical and non-critical application
systems. V&V uses a structured approach to analyze and test the software
against all system functions and all hardware, system users, and other software
interfaces. Through V&V testing, high risk errors are detected early, software
performance is improved, and confidence is established in software reliability.
The cost of conducting independent V&V is offset by cost advantages of early
error detection and improved software reliability and quality.

Without independent V&V testing, system management lacks objective
assurances regarding the content of application source code, the completeness
and usefulness of system and user documentation, the interaction of application
system baseline components, and the stability of system operations.
Consequently, any of the following effects can happen:

Software changes are placed into production without the
completion of relevant system and user documentation;

Unapproved software changes are introduced into the production
environment; or

Important testing, review or approval procedures are omitted from
the maintenance cycle inadvertently or intentionally, in an attempt
to expedite the modification process.

These effects can result in application software that is difficult to maintain
because of insufficient or outdated system documentation. Also, the adequacy
of user documentation may be compromised. This may affect the training of
new employees or the performance of established application users. In an
extreme case, malicious or fraudulent code may be introduced without
management's knowledge, and the performance of the application system may
be severely jeopardized.
Departmentwide Software Configuration
Management Process Needed

Configuration Management Is Informal and Optional
We found that none of the seven application systems used a software
configuration management (SCM) system (e.g., ENDEVOR, which HUD has
purchased but implemented for only one application) to: (1) do impact analysis
of changes; (2) require audit trails for emergency software changes; (3) create
automated approval mechanisms that can be customized to the change
management process, (4) control migration between production and
development libraries, and (5) provide an inventory of the baseline copy of each
program with a record of the changes that have been made to the product. Our
review also disclosed that several of the IT project leaders do not maintain a
configuration inventory as required by the SDM. Instead, these project leaders
rely on the CMD Release Request form for configuration inventory and
configuration status reporting.

Each application system uses some type of controlled access to source code
through library management tools (e.g., Interactive Processing Facility (IPF)11

or Librarian), and a release procedure is used to prepare changes for transfer to
the production environment (e.g., Software Migration System (SMS) or
Program Migration System (PMS)). Although library management tools can
track successive versions of individual software programs, such utilities cannot
recognize which version of each software component comprised a specific prior

production release of the application. Typically configuration management
products control the release of a program from a production library to a
development library to permit a change and control the approval process until
the program is moved back into the production library.

However, the need for configuration management is left to the discretion of the
individual project leaders. One project leader, who currently uses the PMS tool,
plans to migrate to the ENDEVOR product because it is a more powerful
configuration management tool than PMS. Another project leader wants to
implement the Life Cycle Management (LCM) software from Realia. LCM
controls programs in a PC-based development environment, and provides
check-out/check-in capabilities, concurrent development controls, and migration
to the mainframe controls. The project leader for the A67 LOCCS system has
developed rigorous controls over the program source library using the UNISYS
IPF. These controls require that a program be checked out of the source library
for review, and maintains a log of who checked the module out, what library it
was placed into, and the change delta when it is returned. These controls
contain many of the features of a configuration management software package.

The need for configuration management and version control may be acute. Our
analysis of the release requests shows that many software releases may be
required to complete a single change request, and that the same program may be
changed and released into production several times to complete a single change
request (see Table III and Figure 5 below.)

NOTE: Figure 5 shows multiple releases for the same change request. Eight change requests or
PTARS account for 36 (41 percent) of the 88 releases made for F72 TIIS during the evaluation
period. Another 32 releases (36 percent) are associated with miscellaneous or unknown change
requests. Only 23 of the change requests were completed with 20 (23 percent) single releases,
and 3 of the 23 were paired with another change into a single release.

Not only were there multiple releases to complete the change request, the same program could
have been released several times to complete the request. This is shown in Table III.

The GSA Guide for Acquiring Software Development Services defines software
configuration as an arrangement of software parts, including all elements
necessary for the software to work. Configuration management refers to the
process of identifying and documenting the configuration and then
systematically controlling changes to it to maintain its integrity and to trace
changes. Since there are always multiple versions of application software, it is

very important to be able to identify which version of a module is associated
with a particular program configuration. Version control allows program
developers and maintainers to locate the latest version of a program accurately,
reliably, and consistently. Version control also enables system managers to go
back to prior configurations of an application software should a newly modified
version fail to operate correctly after being placed into production.

Without software configuration management tools, system managers would find
it difficult to identify which version of numerous software components
comprised a specific operational configuration. Similarly, unrecorded
"emergency" changes can happen and affect numerous other components of the
application system. Considering the complexity of many of HUD's application
systems, it could be costly and time consuming to accurately identify and
reinstate a specific prior software configuration for use. Instead, system
managers would most likely be forced to live with the current faulty version of
the system and to correct any errors or deficiencies until the application
software was functionally corrected.

Constant revisions to a baseline configuration as shown in Figure 5 could have
significant repercussions. Even a single modification could impact numerous
components of the baseline configuration and, in some cases, add components
to the configuration. Many of the application systems reviewed implemented
hundreds of modifications during a single calendar year. Therefore, manually
performed impact analysis, for proposed software changes, may be insufficient
to identify and evaluate the effect of each modification on other components of
the baseline configuration. Without adequate impact analysis, unforeseen
problems during implementation could arise because of software component
interactions that were overlooked during software testing. Inadequate or
incomplete impact analysis could lead to production failure in extreme cases.

However, use of a SCM product would ensure version control for application
systems that are constantly undergoing modifications. Also, the implementation
of a product, such as ENDEVOR, would not interfere with library management
systems already in use by several applications. With ENDEVOR, system
managers could "rollback" to a prior version of the system with assurance that
all system components would be synchronized to perform properly.
Key Success Factors In Controlling Software
Changes

System Owners Must Take Responsibility to Manage
Software Changes Made To Their Applications
OMB Circular A-130 states that basic management controls for agency
information systems are fundamental to sound information resources
management. HUD managers, as system owners, depend upon application
systems to carry out their programs and are accountable for the performance of
the system. However, program officials are not managing the software change
process. System owners are not involved in the entire software change process.
While they often initiate the change request, they do not systematically evaluate
the impact the changes have on the quality of the software.

The change control deficiencies we noted are attributable to the lack of change
control boards within the system owners' organizations. FIPS PUB 106 stresses
the importance of a centralized approval point for change requests. A
centralized approval process enables one person or group of persons to have
knowledge of all the requested and actual work being done on the system(s).
This is done to prevent problems caused by two or more independent changes to
the system that will be in conflict with each other. Another reason is to
coordinate similar requests so that details can be combined and the total amount
of resources required can be reduced. A centralized change approval board in
the system owners' organizations affirms the system owners accountability and
responsibility for managing their application systems and accountability for the
performance of these systems.

HUD's SDM Does Not Provide Adequate Direction For The
Software Change Control Process
HUD's SDM defines maintenance as the necessary activities performed to keep
the system operational and responsive after it is placed into production. The
system is monitored and post-implementation reviews are done to ensure that it
is performing at an acceptable level. Corrections, deletions, modifications, and
enhancements are performed on the system's hardware and software whenever it
falls below the level of acceptable performance or when the level of acceptable
performance is amended.

However, the SDM lacks procedures to implement FIPS PUB 106 guidelines on
controlling and improving the software maintenance process, including using
effective techniques and tools. Specifically, the SDM does not address the
following key management issues that would establish controls over software

maintenance:

A process which implements FIPS PUB 38 guidelines to define the
format and content of test plans and test analysis;

Software configuration management and version control techniques
to manage the maintenance process within an evolving and dynamic
application system;

Identification of benefits of software configuration management
tools or support the use of an automated tool to ensure an adequate
audit trail of system modifications;

Descriptions of how change request and problem reporting data can
be used to evaluate the adequacy of current maintenance practices,
identify questionable trends in software maintenance, or evaluate
application stability;

Identification of what types of maintenance data provide the most
reliable and useful metrics information, how data should be
measured, or how management can interpret measurements to
improve their control of application software maintenance
processing;

Definition of the quality assurance functions to manage the
maintenance process;

Identification of the types of testing that should be mandatory for
evaluating the anticipated performance of a software change; and

Specifics on the formulation of software verification and validation
plans (SVVPs) and independent V&V testing for software
maintenance activities, whether or not the initial application
development products were subjected to V&V testing under
existing Federal standards.

FIPS PUB 106 Does Not Define Software Maintenance
Management Responsibilities For System Owners and
Technical Support Organizations
FIPS PUB 106 recognizes the importance of management in the software
maintenance process, stating that management is clearly one of the most
important factors in improving the software maintenance process. It states that
management must examine how the software is maintained, exercise control
over the process, and ensure that effective software maintenance techniques and
tools are employed. In addition, software maintenance managers are
responsible for making decisions regarding the performance of software
maintenance, assigning priorities to the requested work, estimating the level of
effort for a task, tracking the progress of the work, and assuring adherence to
system standards in all phases of the maintenance effort.

This guidance should place the same emphasis on program management
accountability and technical support organization fiduciary responsibility to
their program clients that is found in OMB Circular A-130. However, FIPS
PUB 106--which is the only Federal guidance on software maintenance--
assumes that all managers will know how to fulfill these responsibilities. It
does not provide guidance about the effective techniques and tools that
managers must employ. It does not define techniques and tools that aid the
exercise of control over the software maintenance process. It does not define
techniques and tools that aid in estimating the level of effort for a task.
Agencies are left to exercise these technical responsibilities without adequate
guidance.

The deficiencies in FIPS PUB 106 guidance are being addressed in the PCIE
consolidated report to OMB. Nevertheless, it is still incumbent on individual
Federal agencies to establish their own guidance in the absence of Federal
guidance.

Project Management Personnel Rely Heavily On Adequate
Performance Of Supporting Contractors
IT project management personnel rely extensively on an adequate and thorough
performance by supporting contractors who perform the design, coding, and
testing of approved changes. We found little evidence that either the
contractors' technical performance or the adequacy of the modified source code
were sufficiently reviewed by responsible IT project leaders prior to

implementation. Quality review of contractors' performance in change control
is essential to minimize rework costs and risks of errors and system failures
(See Chapter 4).

Recommendations

Acting Director of Information Technology, and The
Technology Investment Board (TIB)

3 (a) Issue guidelines with the concurrence of the Management
Committee for system owner organizations to use in managing the
software maintenance of their applications in accordance with
OMB Circular A-130:

Establishing Change Control Boards;

Evaluating the systems usability in supporting organizational
goals and mission.

3 (b) Define software maintenance and classify changes according to the
functional type of change being made to the application systems
(e.g., adaptive, corrective, perfective).

3 (c) Identify the measurements needed to support Departmentwide
management of information technology. The measurements shall
include:

Resource tracking - quantification in dollar amounts of
resources used as the input for production of a service or
product (i.e., estimating and tracking resource use, tasks,
deliverables, and milestones);

Work product tracking -

The number of units of the product or service provided
to the customer, and appropriate measures of size and
complexity (e.g., function points, cyclomatic
complexity, Halstead code measurements, Kiviat
diagrams); (see Appendix C on software
measurements),

Tracking and control of source code, test case, and
document versions;

Quality tracking -

Tracking and control of problems, defects, and open
issues,

The level of service or product quality, both in terms of
customer satisfaction (external quality) and of work
performed to provide the service (internal process
quality); and

Change tracking - a common tracking system that will track
all software changes made to each application system,
regardless of the type of proposed change or its anticipated
level of effort.

3 (d) Adopt a standardized form for initiating all requests for software
changes, regardless of anticipated level of effort. The form shall
support the measurement program and minimally include: requestor
name, date, priority, problem description and justification, type of
change, management approval, and completion date.

TIB Representatives and System Owner Organizations
3 (e) Follow the guidelines issued by the Management Committee to

establish a centralized change control board (See Recommendation
3 (a) above). Ideally, the Change Control Board should be chaired
by a senior manager responsible for operations.

3 (f) Follow the guidelines issued by the Management Committee to
periodically evaluate the application systems' capability to support
Departmental and office strategic objectives (See Recommendation
3 (a) above). The evaluation should include a historical review of
changes and problem data similar to the IT study of release
management so managers can identify which software modules
require a high amount of corrective changes, rework by contractors,

and rework due to testing and review problems. The review should
also determine whether it would be more cost effective to redesign
than continue maintaining these modules.

3 (g) Follow the guidelines issued by the TIB for conducting user
acceptance testing and reviewing the test results of software
changes. At a minimum, the appointed reviewers shall review the
results of the user acceptance tests (see Recommendation 3 (k)
below) to determine if end users are satisfied with the changes and
that the system will meet the needs as intended.

Acting Director, Office of Information Technology
3 (h) Modify and/or establish policy documents to include an

organizationwide software maintenance policy describing in broad
terms the responsibilities, authorities, functions, and operations of
both system owners and IT;

3 (i) Establish a policy for using an integrated software configuration
management (SCM) tool, such as ENDEVOR, for all application
systems on all platforms (i.e., UNISYS, HDS, LAN, PC). In
preparation for adoption of this recommendation, HUD
management shall establish a definite implementation schedule
covering each of the affected systems. The schedule should be
aimed at full SCM implementation within a short period of time.

3 (j) Establish policies for software V&V plans, as defined in FIPS
Publication 132. Independent V&V testing shall be performed for
significant adaptive and/or perfective software changes within the
application system. Although corrective modifications shall not
require V&V testing, they shall be tracked, and evaluated in
subsequent V&V testing of adaptive or perfective changes to avoid
potential conflicts. The policy shall:

Stipulate uniform and minimum requirements for the format
and content of developed Software Verification and
Validation Plans (SVVP), with graduated requirements based
on level of effort thresholds;

State purpose and benefits of independent V&V testing;

Describe, in sufficient detail, the required inputs and outputs
to be included in a SVVP;

Suggest optional V&V tasks to be used to tailor a SVVP, as
appropriate, to a particular V&V effort; and

Ensure that the operational system uses an optimum, least-
cost mix of resources to meet user functional, data, and other
systems' compatibility requirements.

3 (k) Modify the SDM to include the following:

Detailed source coding standards applicable to all phases in
the SDM that include, but are not limited to:

standard data definitions approved by Central
Information Management,

coding conventions,

structured, modular software,

single high-order language,

well-commented code, and

compiler extensions.

(Note: The above standards establish measures to facilitate
management review.)

Formal testing procedures for software modifications that
include tests for all valid, invalid, expected, and unexpected
outputs during maintenance. Require acceptance testing by
the user community for software changes that, at a minimum:

represent a new program or module within the

application,

represent a major system enhancement to the
application,

represent a level of effort that is technically considered
by management as a "development" (perfective)
project, than a routine or minor maintenance action
item, or

are a group of software changes that collectively
represent a considerable change to the application's
performance.

An objective review of modified source code and test
documentation to ensure the modified code conforms with
established source code standards and effectively complies
with the change request, and that no additional unapproved
changes were introduced by the programmers during the
coding process. This review must be performed by an
individual or group of individuals with sufficient technical
knowledge to detect programming deviations.

Auditee Comments and OIG Response

IT has provided substantial comments to this finding, including access to project
files. IT management has generally agreed with the recommendations but not
with the way that we have portrayed each condition. Our evalualtion of IT
comments is discussed in detail in Appendix A.

Chapter 4

HUD Has Not Been Using Performance-Based Contracting Methods for
Software Development and Maintenance Contracts

The Offices of Procurement and Contracts (OPC) and Information Technology
(IT) are not using performance-based contracting methods to award software
development and maintenance contracts as required by Federal Procurement12

Regulations. OPC has consistently awarded Cost-Plus-Fixed-Fee (CPFF)
contracts rather than incentive type of contracts for software development and
maintenance. We found that the Statements of Work (SOW's) prepared for
eight contracts did not include measurable performance standards, acceptable
quality levels, and quality assurance surveillance plans. Consequently, these
eight contracts, worth over $135 million, of which approximately $8.6 million
were billed for the seven applications during our review period, do not provide
the incentive or accountability for contractors to perform well and control costs.

Also, without performance measures, HUD cannot determine whether the
millions of dollars paid to contractors each year for software services are
worthwhile. Moreover, without performance measures, HUD cannot hold
contractors accountable for deficient performance that could cause serious
operational problems.

According to OPC and IT, the inability of program officials to define software
requirements, and the need for flexibility in responding to time sensitive
legislative and administrative requests are the reasons for not using
performance-based contracting.
Federal Requirements on Performance-Based
Contracting

The Office of Federal Procurement Policy (OFPP) Letter #91-2 entitled Service
Contracting, dated April 9, 1991, requires agencies to use performance-based
contracting methods when developing Statements of Work (SOWs); develop
formal, measurable performance standards and surveillance plans for assessing
contractor performance; and use contract types that motivate contractors to
perform at optimal levels. The letter emphasizes the use of performance
requirements and quality standards in defining contract requirements, source
selection, and quality assurance. Furthermore, to the maximum extent

practicable, contracts shall include incentive provisions to ensure that
contractors are rewarded for good performance and quality assurance deduction
schedules to discourage unsatisfactory performance. These provisions are based
on measurement against predetermined performance standards and surveillance
plans. Agencies must document in their contract files the reasons for those
instances where performance-based contracting methods are not used.

OFPP Pamphlet #4, entitled A Guide for Writing and Administering Performance
Statement of Work for Service Contracts, dated October 1980, provides guidelines for
writing and administering performance statements of work for service contracts.
It describes a systematic means to develop statements of work and quality
assurance surveillance plans in order for agencies to define and measure the
quality of contractors' performance.
Elements of A Quality Assurance Surveillance Plan
and the Performance Requirements Summary

Both the OFPP Letter #91-2 and OFPP Pamphlet #4 identify the Quality
Assurance Surveillance Plan (QASP) and the Performance Requirement
Summary (PRS) as the two primary documents agencies can use for planning,
measuring, and monitoring contractor performance.

A QASP is a well-defined written document used to ensure that systematic
quality assurance methods are used. It is developed as an extension to, and
included within the contract statement of work. Contractors use the QASP to
develop their written quality control program. The QASP's primary function is
to determine whether the services provided by the contractor meet the
Government's quality performance standards using systematic quality assurance
methods. A QASP has four performance elements; performance standards,
acceptable quality levels, performance indicators, and performance values.
Performance standards and acceptable quality levels are to be developed
concurrently with the QASP and clearly defined in the SOW.

Performance standards are characterized as an acknowledged measure for
comparison of quantitative and/or qualitative values. These standards are
typically derived from industry directives and governmental and agency
standards. It is important to select performance standards that pertain to the
deliverables, products, or services being acquired. Also, each performance
standard used should have defined acceptable quality levels.

Acceptable Quality Levels (AQLs) are the maximum percentage of allowable
variance from the norm before a deliverable, product, or service is rejected. The
AQLs recognize that defective performance sometimes happens unintentionally.

Performance indicators are characteristics of an output that can be measured. It
may measure quantity as well as quality with the emphasis on using quantitative
measurements whenever possible. Usually, the measures are stated as rates,
i.e., a means of expressing something as it related to a fixed amount of
something else. A person must be careful to choose performance indicators that
are realistic for the service performed. Whenever possible, one must choose an
indicator that measures the service by a numerical value.

Performance values are a composite of performance standards and acceptable
quality levels, which describe the quality of the service that can be measured
(performance indicators). Performance values enable a person to place realistic
demands on the contractor performance. Performance values permit the writing
of the performance-oriented SOW and eases the development of the QASP.
These outputs are evaluated periodically by the quality assurance evaluator
(QAE) whose ultimate responsibility includes developing an activity's schedule
based on requirements within a surveillance plan.

Once these performance elements are known, they are categorized into a
document called Performance Requirements Summary (PRS). The PRS
summarizes the performance requirements of the contractor's evaluation. This
document is an attached exhibit to the SOW. This summary identifies the
performance indicators related to each service; defines the required standard for
each service; states the acceptable quality levels associated with each standard
and service; identifies the surveillance method to be used; and identifies the
deduction percentage from the contract price for exceeding the acceptable
quality level.

An Example of a Measurable Performance Standard,
Acceptable Quality Level, and Performance Indicator
To use an illustration, under the performance measurement, "Quality of Project
Performance" in the ADP solicitation referenced in the auditee response to this
draft finding, one measurement indicated that the contractor "will be evaluated
to the extent the work was error free." However, a more appropriate measurable
performance standard here could be 100% of the software changes moved into the

production environment do not require a correction release . The associated
Acceptable Quality Level would indicate that deviation of more than 5
percent (target based on current experience of 16 percent as noted in Chapter 3)
of releases will result in a deduction . The performance indicator would be
operational in the production environment without error for two or more
production cycles .
HUD's Software Development and Maintenance
Contracts Are Not Performance-Based

We reviewed eight ADP software and maintenance contracts out of a total of 71
ADP agencywide contracts. The contract numbers are HC 16325, HC 16326,
HC 14747, HC 16334, HC 16313, HC 16315, HC 16311, and HC 16310. These
contracts provide software development and maintenance services to the entire
agency. They were selected based on the contract work performed on the seven
systems from October 1, 1992 through March 31, 1994. The contracts'
negotiated value at full performance is in excess of $135 million depending on
funding availability. At the time of our review, from the award date to
March 31, 1994, these contracts were funded in excess of $70 million. Also,
during our review, approximately $8.6 million were billed for the seven
systems.

Performance-based contracting methods consist of SOWs that describe "what is
to be performed" and surveillance plans that ensure systematic quality assurance
methods are used to facilitate the assessment of contractor performance. HUD's
Statements of Work (SOWs) for the eight ADP software development and
maintenance contracts do not include performance standards and acceptable
quality levels. HUD is not using quality assurance surveillance plans, to
include performance requirements summaries, as a means to monitor the
contractor's performance. In addition "Task Specifications," which are prepared
to supplement the SOW, generally contain vague requirements without
specifying performance standards or acceptable quality levels.

Statements of Work Lack Measurable Performance
Requirements
We examined the SOWs and the preaward documentation for the eight software
development and maintenance contracts to determine whether: (i) the contract
SOWs contained measurable performance standards, acceptable quality levels,

and performance values; (ii) any follow-on contracts contained more definitive
SOWs and performance standards; and (iii) the contract files contained the
appropriate justification for those contracts that did not use performance-based
contracting methods.

We found that none of the eight contract files contained the required
documentation to justify why performance-based contracting methods were not
used. We also noted that all eight of the contracts contained identical
"boilerplate" SOWs except for the staffing requirements section. The SOWs for
the eight contracts we reviewed outlined seven general criteria for evaluating
contractor's performance: efficiency, ingenuity, responsiveness, perceptiveness,
thoroughness, timeliness, and resourcefulness. The criteria are vague and
subjective. They cannot be linked to any specific measurable performance
standards and acceptable quality levels. For instance, factors such as reliability,
schedules, budgets, user satisfaction, etc., are not measured.

OPC and IT officials explained that "boilerplate" SOWs are used because they
allow flexibility in responding to time- sensitive legislative and administrative
requirements. However, SOWs for time sensitive tasks require specific, not
"boilerplate," performance and quality requirements to ensure successful timely
completion of tasks with minimal risk of rework.

Another reason given for using "boilerplate" SOWs is that program officials
cannot always specify software requirements. This is not an acceptable reason.
The SOW is a most important element of a contract. It should both clearly
communicate to the contractor the Government's expectations and serve as a
basis for evaluating the contractor's performance. To avoid developing vague
and imprecise SOWs, measurable performance standards, acceptable quality
levels, and related documents must be identified within the SOW for the
individual contracts. This gives HUD the necessary leverage to ensure that
contractors' performance levels are of an acceptable quality and that HUD only
pays for products and services that meet the contracting standards.

Without performance measurements, HUD cannot determine whether the
millions of dollars paid each year for contractors to develop and maintain
application systems are spent wisely. Further, if performance data are not
collected and analyzed, HUD cannot prevent serious operational problems
caused by deficient contractor performance.

Quality Assurance Surveillance Plan and Performance
Requirements Summary Are Not Prepared
Quality Assurance Surveillance Plans and Performance Requirements
Summaries have not been developed and incorporated as part of the SOWs for
the eight contracts reviewed. We brought this issue to the attention of HUD
officials responsible for evaluating contractors' performance. These officials
indicated that they do not quantify the seven performance criteria of efficiency,
ingenuity, responsiveness, perceptiveness, thoroughness, timeliness, and
resourcefulness stated in the SOWs. Instead they rely on their personal and
professional expertise and user acceptance in determining the acceptability of
deliverables and for measuring contractor performance. However, without
establishing and incorporating measurable performance standards, acceptable
quality levels, and quality assurance documents in the SOW, HUD cannot hold
the contractor accountable for the quality of products or services provided. As a
result, HUD lacks assurances that the contract work is cost effective and
produces the intended results.

Task Specifications Lack Important Performance
Standards And Are Not Prepared According to Internal
Instructions
To meet management's need for flexibility, OPC allows IT to use an agency-
unique contracting tool entitled "Task Specification." According to OPC's office
instruction "90-5" dated June 6, 1990, a task specification is a contracting tool
that extends the GTR's authority over the technical direction of the contract.
OPC does not review these Task Specifications for completeness and
conformance with the applicable contract requirements.
IT's office instructions on preparing Task Specifications contain requirements
that can be measured. IT-CON-04 entitled Task Specification Preparation and
Issuance dated February 9, 1988, requires the task specification to:

Describe in detail all the work to be completed;

Break down the work into subtasks to be completed by a specific
date;

List the products to be delivered; and, most importantly,

Satisfy the requirements given in the SOW of the contract.

A schedule of completion and the delivery of a satisfactory product can be used
to measure the performance of a contractor. IT-CON-04 also requires all
products to be accepted or rejected according to "IT-CON-05," entitled Contract
Product Acceptance Instructions. IT-CON-05 requires acceptance criteria, or
measuring elements in the contract or task specification to determine if the
product meets the requirements. It also requires the acceptance or rejection of a
product to be completed within 5 working days after receiving it from the
contractor.

Our review of the Task Specifications for the eight contracts in our audit sample
revealed that the Task Specifications were vague and did not include
performance standards and acceptable quality levels (See Appendix D for an
example of a Task Specification used). The Task Specifications also did not
meet the preparation, issuance, and contract product acceptance requirements of
internal office instructions IT-CON-04 and IT-CON-05.

We evaluated 78 task specifications which included all task specifications and
related modifications under our audit sample (See Table I). This evaluation
disclosed:

Task specifications did not contain performance standards,
acceptable quality levels, or product acceptance criteria;

94 percent described the tasks to be performed using generic
language;

97 percent of the language used was either identical or almost
identical from task specification to task specification;

86 percent lacked product delivery dates;

98 percent lacked detailed explanation for modifications of task
specifications; and

61 percent of the task specification product acceptance forms were
not completed on time.

OPC and IT need to conduct quality reviews of the task specifications to ensure
that they adequately describe the work and acceptance criteria. Additionally,

both the SOWs and Task Specifications are not performance-based and do not
meet either Federal procurement policy or internal office instruction
requirements. As a result, IT's personnel managing software contracts cannot
evaluate contractors performance to hold them accountable for the results of
their work and ensure that HUD only pays for services that meet contract
standards.

Contractor Performance Problems Could Exist In Software
Maintenance
While we did not conduct an extensive quality assurance review of the work
performed by the contractors, we did find indicators in the software change
control process (See Chapter 3) that suggest quality problems exist in the
software change release process that could have been avoided or mitigated with
implementation of contract performance measurements. For example, an
analysis of software releases for the seven systems identified in our review
revealed that numerous software releases may be required to complete a
requested change; and numerous emergency releases were made.
Incentive Type Contracts Are Not Used For
Software Services

Federal Acquisition Regulations (FAR) 16.103 state that the contract type is
negotiated to provide the contractor with the greatest incentive for efficient and
economical performance. The primary factors in determining what type of
contract to select depend on the ability to predict the quantity desired or to
define the nature of the work to be performed.

OPC almost exclusively awards CPFF contracts for software development and
maintenance efforts when other, cost-effective and performance oriented
contract types could be used.

OFPP Policy Letter #91-2 requires agencies to carefully select acquisition and
contract administration strategies, methods, and techniques that best
accommodate the requirements. Agencies are to consider using contract types
that provide performance incentives and deduction schedules. Contracts

containing award or incentive fees motivate the contractor to improve
performance and reward the contractor for good performance. Deduction
schedules enhance the contractor's accountability and discourage unsatisfactory
performance. The use of deduction schedules does not imply that the contractor
may knowingly perform defective service. It simply implies that the
Government recognizes defective performance sometimes happens
unintentionally and may be a result of circumstances beyond the contractor's
control.

Contract types that motivate contractors to perform at optimal levels include:

Cost Plus Award Fee - This contract type allows the contractor to
earn a base fee regardless of his performance. Additionally, the
award fee is based on the Government's evaluation of the
contractor's performance. The terms of the criteria shall be stated in
the contract;

Cost Plus Incentive Fee - The fee is determined by comparing
actual cost to target cost. The target fee is calculated by applying a
fee adjustment formula (share ratio) to the difference between the
target and actual cost; and

Fixed Price Incentive - A price equal to the sum of the final
negotiated cost and final profit. The final profit is determined by
comparing final negotiated cost and adjusted target profit by
applying a formula (share ratio).

A key factor in determining if a CPFF contract should be used is the inability of
the procuring agency to sufficiently describe the work requirements.
Consequently, CPFF contracts place the Government at a higher risk than other
contract types because of this lack of identifiable work requirements. The use
of CPFF contracts as the sole contracting vehicle minimizes the contractor's
incentive to perform well and control cost. CPFF should be used only after
other performance oriented contract types have been considered.

The eight ADP software development and maintenance contracts we reviewed
were all CPFF contracts. HUD's excessive use of CPFF contracts has been
noted in a report issued by the General Services Administration (GSA) on June
8, 1992. The report recommended that HUD define users' requirements more

clearly so that other contract types can be used. Although HUD management
agreed with the recommendation, HUD continues to rely on CPFF contracts for
software maintenance and development work.

HUD's Current Efforts To Implement Performance-based Contracting Fall Short
of OFPP Policy and Guidelines
In response to our discussion draft finding, IT indicated that it had actively
taken the lead in moving toward performance-based contracting methods for
software maintenance and development contracts. In 1994, the Assistant
Secretary for Administration signed a pledge with OFPP to use the
performance-based contracting methods prescribed in OFPP Policy Letter 91-2
for service requirements identified in an attachment to the pledge. The service
requirements identified were a contract for software development, maintenance,
and information resources management, currently valued at $89.3 million and
due for follow-on award in February 1995. The Department pledged that this
service would be awarded based on performance work statements including
measurable performance standards, surveillance plans, best value selection
procedures, and fixed price contracts with positive and negative incentives.

HUD staff, working closely with GSA experts, issued two solicitations within
the last 9 months as their first efforts in developing performance-based
contracts. One of the two contracts was for ADP services. The five
performance measures incorporated into solicitation RFP #DU100C000016347
are: (1) quality of performance, (2) timeliness, (3) use of resources, (4)
completeness/quality of documentation, and (5) innovation.

Unfortunately, we found the solicitation SOW still did not meet the intent of the
OFPP policy and guidelines for performance-based contracting. We saw no
evidence of measurable performance standards, acceptable quality levels, or a
Quality Assurance Surveillance Plan incorporated into the contract. The
generic work standards used in the solicitation were identical with those used in
previous ADP contracts. We concluded that the Department has not met its
pledge to the Office of Federal Procurement Policy in using performance-based
contracting for software development, maintenance, and information resources
management.

Based on the response to our discussion draft finding, the evaluation process

will consist of: (i) performance reviews of interim deliverables so that the final
deliverable can be evaluated, and (ii) an evaluation report to be completed for
each deliverable. After the evaluation period, the Government Technical
Representative (GTR) will summarize the results of the reviews and arrive at
the level of performance and recommend the appropriate action to the
Contracting Officer. However, this again is subjective in nature. For example,
the performance standards and acceptable quality levels that the GTR will use to
measure and evaluate the work have not been defined.

IT also indicated that CPFF contracts provide them the flexibility to respond to
dynamic legislative and management requirements, besides changing customer
requirements. However, these CPFF contracts are not performance based.
Without establishing and incorporating measurable performance standards,
acceptable quality levels, and quality assurance documents in the contract, HUD
cannot hold the contractor accountable for the quality of products or services
provided. As a result, HUD lacks assurances that the contract work is
cost-effective.

We Believe That Establishing a Project Office Can
Facilitate the Implementation of Performance-based
Contracting
IT and OPC have cited the inability of program officials to define software
requirements, and the need for flexibility in responding to time-sensitive
legislative and administrative requests as the reasons for not using performance-
based contracting. While we have not conducted the audit work necessary to
make a recommendation, we believe that primary organization heads should
consider establishing a project office whose principal objectives are to ensure
coordination between program organizations and IT and its contractors in
defining measurable requirements and specifications during system
development and maintenance. This office would assist management to assess
the success of these efforts.

Under OMB Circular A-130, the program manager is responsible for obtaining
the information system(s) necessary to fulfill the mission. Additionally, HUD
Handbook 2400.1 requires that primary organization heads and their staffs play
key roles in the ADP planning and budgeting process. They provide initial
requirements and specifications for ADP systems, work in close coordination
with the Office of Administration during development, certify that the resultant

systems meet their needs, and participate in implementation and ongoing
operational activities. The establishment of a "project office" would ensure
coordination between customers and developers to develop measurable
requirements and specifications.

For many years, construction and defense industries have successfully applied
the concept of the "project office" as a tool to manage risk on major projects.
The project office is responsible for ensuring that every reasonable step is taken
to ensure the success of the project. The project office is not responsible for the
development project (e.g., to deliver an operational information system). Its
principal objectives are to ensure open, fact-based dialog between customer and
developer regarding the processes that maximize chances for program success
and to provide objective and independent assessments of estimates and
milestone status.

The project office must be independent and objective. If the customer or
developer can silence the project office, its effectiveness is compromised.
Typically the project office reports at a level in the organization that insures
access to key decision makers and the opportunity to escalate issues to the
highest levels. The project office identifies industry- best practices, and
champions their use within the organization. It is not an audit function or an
enforcement function. The project office must have at least one senior
individual with large-scale project management experience.
For example, a project office for the CFO should include both an accounting
systems expert and an information systems expert. A project office for the CFO
might address many of the following issues:

Define both CFO and IT responsibilities for operating each
application;

Implement a service-level agreement with IT that recognizes IT's
role as a service provider and CFO's role as the system owner.

Measure the performance of IT and its contractors on each task they
complete, for example:

 Output measures should describe the number of units of
goods or services that were produced, either by discrete
definition, e.g., function points for software, or by a proxy

measure that accurately represents the product;

Efficiency measures should be the total cost per unit of
output;

Effectiveness measures should reflect processes controlled by
IT management, to include:

quantity of output;
quality of outputs as defined by CFO (production
problems and ABENDS are quality failures);
timeliness of outputs; and
customer satisfaction, based on statistical survey of
CFO customers;

Productivity measures should incorporate the amount of work
done, the effort devoted to it, and the time that it takes, e.g.,
the number of function points of software delivered each
month per developer;

Throughput measures are designed to allow an organization
to measure the total volume of work completed for the CFO
over a specific period of time;

Define projects, players, roles, and responsibilities for financial
management systems;

Ensure resolution of the accounting issues for full implementation
of HUDCAPS;

Ensure proper internal controls are built into the accounting
processes and reflected in the financial management systems;

Ensure proper security controls are implemented, as required by
OMB Circular A-130;

Ensure that the Change Control Board is operating effectively by
monitoring approvals for releasing software changes into
production and subsequent production problems and failures;

Require that all information systems for the CFO are placed under
Configuration Management software control;

Implement Help Desk and/or Defect Tracking software to support
the HUDCAPS Help Desk and CFO Change Control Board, and
build an historical database to assist in resolving production
problems; and

Monitor quality assurance and testing activities.

Recommendations

Acting Director of Information Technologys (IT)
4 (a) Prepare guidelines to assist IT to develop realistic performance

standards that are measurable. These standards should address
factors in which the contractor can be held more accountable;

4 (b) Incorporate surveillance plans and performance requirements'
summaries into performance-based contracts;

4 (c) Develop task specifications that follow internal instructions, IT-
CON-04 and IT-CON-05, and include measurable performance
standards and acceptance criteria related to each specific task
assignment;

4 (d) Ensure that modifications to the task specifications provide
additional details about the task and/or work requirements;

4 (e) Ensure that all product acceptance forms are reviewed timely
according to agency standards; and

4 (f) Ensure that copies of task specifications and product acceptance
forms issued are provided to OPC for their review and evaluation.

Director of the Office of Procurement and Contacts (OPC)
4 (g) Implement performance-based contracting methods for software

development and maintenance contracts by:

1. Application system is a set of software designed to support a
particular administrative or programmatic function such as
accounting, grants management, mortgage insurance, etc.

2. HUD's definition of software development for systems in
production would include those activities categorized in FIPS PUB
106 as either adaptive or perfective maintenance.

Using alternative contract types that will allow the use of
deduction schedules and incentives provisions;

Requiring IT to provide measurable performance standards
and acceptable quality levels within the SOW;

Requiring IT to submit surveillance plans with performance
requirements summary within the SOW package; and

Developing and enforcing oversight controls to ensure Task
Specifications are complete and conform to Department
procurement requirements.

Auditee Comments and OIG Response

OPC generally agreed with the recommendations of the draft report. IT agreed
that the Department should incorporate performance measures, acceptable
quality levels, and quality assurance surveillance plans into future contracting
efforts. However, performance measures can only be defined in contracts in
cases where Program Area requirements are clearly defined (emphasis
added).

IT's response does not fully address the intent of the recommendations. The
intent is not for IT to develop performance standards based on program area
requirements. Instead, we are requesting IT to control contractor performance
by developing realistic performance standards that are measurable so that
contractors can be held accountable for products and services delivered. These
factors should include the quality, efficiency, effectiveness, and productivity in
providing system support that are independent of program area requirements
(see Appendix C on software measurements.)

3. GAO/AIMD-94-115, May 1994, Improving Mission Performance
Through Strategic Information Management and Technology:
Learning From Leading Organizations.

4. Release means moving a set of software changes from the test
environment into the production environment.

5. Emergency Release: A release placed into production in less
than the normal period of 7 days in advance. This means the
required review and testing must be accelerated.

6. Acceptance testing is considered the "last line of defense" for the
end user. The end users perform functional tests on the modified
software using live data, test data, or a combination of data.

7. Corrective maintenance refers to software changes which are
necessitated by actual errors and, therefore, are a reactive process
required to keep the system operational.

8. Adaptive maintenance refers to software changes which respond
to regulatory or environmental (e.g., hardware, operating system, or
data base management system) changes, and which are normally
beyond management's control.

9. Perfective maintenance refers to software changes which are
executed to meet the evolving and/or expanding needs of the user.

10. Verification and Validation testing is a formal check and balance
effort which monitors and evaluates software as it is being built.
V&V consists of tasks from a broad spectrum of analysis and test
techniques and is performed to determine functionality, uncover
performance of unintended functions, and ensure the production of
quality software.

11. Library software is a set of programs which organizes and
maintains control files of program source-language. Its automated
functions include the retention and identification of prior program
versions and limited edits over program statement format and
content.

12. HUD's definition of software development for systems in
production would include those activities categorized in FIPS PUB
106 as either adaptive and perfective maintenance.

